The Foot Collective

THE ZEPPA TIPPING POINT PROBLEM

A recent post on The Foot Collective FaceBook page titled Humans aren’t meant to walk on ramps!, highlighted the problems caused by elevating the heel above the forefoot known in the footwear industry as drop. Like the author of the post, I also wear zero drop shoes like Xero and Lems exclusively  (with NABOSO insoles) and spend all of my time indoors barefoot. Like the author, I too have experienced an immediate, unnatural and a sense of disorientation in terms of a connection with the ground, when I have worn dress shoes and winter boots with moderate drop.

While some amount of boot board ramp angle or zeppa appears to necessary for a strong, tensioned stance (what I refer to as a planted or rooted stance), the amount of zeppa is turning to be much less than I originally thought. It may be less than 1.5 degrees total (zeppa + delta). Assuming zero delta, there appears to be a very narrow range within which zeppa is optimal after which a tipping point is reached in terms of adverse effects on the motor control and balance systems.

It has also become apparent that some racers are tuning ski response by adjusting binding delta. Zeppa and delta each have a different effect on ski response especially edge control and the ability of a skier to resist the forces acting on them in the load phase of a turn. I will discuss issue this in a future post.


Humans aren’t meant to walk on ramps!

Powerful post by TFC Educator @optimize.physiotherapy
👣
Why do most shoes have a heel on them?
This really hit home the other day when I put on my winter boots (because it snows in November in Canada). Being someone who goes barefoot all day at work and at home (and wears zero drop shoes), it was a very unnatural feeling. It really threw my walking off, and I noticed the effects immediately. It changed the way I walked, stood, and made me use different muscles.
Humans are meant to have a flat base. No other animal wears mini ramps on their feet, but we do. The problem is that your body adapts to having a heel on, and it works different from a biomechanical perspective in any given movement pattern (the higher the heel, the worse the effect…but even most casual, running, and gym shoes have heels)


One thing it really does is affect your ankle/foot function. It has a huge effect on ankle ROM and tissue tension around the ankle. The problem is, when you wear a heel all day at work/at the gym/walking around, your tissues adaptively shorten and you don’t require as much ankle ROM. But then you take your shoes off and walk, go up your stairs, squat down to get things around the house etc. This is where people have issues. Not only at the foot/ankle but all the way upstream at other joints



Ankle ROM is incredibly important, and walking on a ramped surface all the time is incredibly unnatural. So do yourself a favour and spend less time in heeled footwear or get rid of it altogether


The Foot Collective is a group of Canadian physical therapists on a mission to help humans reclaim strong, functional and painfree feet through foot health education.

The Foot Collective are empowering people with the knowledge they need protect their feet from the dangers of modern footwear and the guidance to fix their own feet.

http://www.thefootcollective.com

THE ORIGINS OF KNEE ANGULATION

A recent post on the Foot Collective Facebook page titled, Are you stable on 1 leg?, advises that if  you stand on one leg and look like the top row of pictures in the graphic below (red X), you have a foot & hip that are dysfunctional. This test is best done barefoot on a hard, flat, level surface.

Graphic with permission of Correct Toes

The lower photo (green checkmark) shows the alignment of a leg that is torsionally balanced (stiffened) in the ankle and knee joints. The foot and knee cap align straight ahead and square with the pelvis while the alignment of the knee with the foot, leg and thigh is substantially linear. If you can move to single limb support from two feet, easily achieve this alignment with minimal effort, sustain it for 30 seconds or more, and achieve similar alignment on both left and right legs, you probably have good stability in single limb support.

If you look like the upper photo (red x), it indicates dysfunction and especially a lack of torsional stability in the support limb. The problem is usually caused by constrictive, supportive, cushioned footwear and/or arch supports that, over time, deform feet and weaken the arches. Ski boots are one of the worst offenders in this regard.

If you and when you can achieve good stability in single limb support, you are ready to test the effect of footwear, especially your ski boots. Start by putting on your day to day footwear. Then do the same test on the same surface with each pair of shoes. Work your way up to your ski boots. Adjust the closures of your ski boots to the tension you normally set for skiing. If you are not able to quickly and easily assume the stable position shown in the lower photo (green checkmark), then you know that cause  is the footwear. You can then test the effects of insoles, including ski boot footbeds by removing them from the footwear, placing them on the test surface and moving to single leg support. While not perfect, these tests will help determine the cause of single support limb instability.

In skiing, an unstable outside support leg is characteristics of most skiers and even racers at the World Cup level. It is typically caused by ski boots interfering with the physiological processes that fascially tension the arches and forefoot that create the triplanar torsional stability of the ankle and knee joints of the biokinetic chain necessary to set up a platform under the outside ski to stand and balance on. But instead of addressing the underlying cause, the ski industry invented the term, knee angulation. Knee angulation is indicative of unbalanced torques acting about the uphill edges of the skis, especially the outside ski. When unbalanced torques are present about the edges of a skis or skis, unbalanced torques will also be present across the joints of the lower limb; not a good thing.

The alignment of the knee illustrated in the lower image (green checkmark) is seem as skier or racer enters the fall or rise line with outside leg extended, confirms the existence of a platform under the outside foot on which the skier or racer is balancing on with dynamic balance of torques across the joints of the ankle foot complex and knee. See my post MIKAELA SHIFFRIN AND THE SIDECUT FACTOR – http://wp.me/p3vZhu-1Uu

There is an abundance of information on programs to correct foot deformities,  muscle weakness and imbalances on web sites, YouTube and FaceBook groups such as The Foot Collective, Correct Toes, Feet Freex and the Evidence Based Fitness Academy – EBFA (Dr. Emily Splichal).

The Foot Collective web site has a series of posts on An Introduction to Feet and Footwear (1.) as well as a series of Foot-Casts (2.)

Meantime, a post on a web site called Rewire Me (3.) has an interview with Dr. Emily Splichal called No Shoes Allowed in which she discusses the importance of sensory information entering the body and the need to be able to process this information and handle the load and impact. Dr. Splichal suggests starting the process by getting the body and foot accustomed to sensory information without shoes acting as a barrier.

An excellent free paper with great graphics is The foot core system: a new paradigm for understanding intrinsic foot muscle function (4.)


  1. http://www.thefootcollective.com/an-introduction-to-feet-and-footwear/
  2. http://www.thefootcollective.com/footcast/
  3. https://www.rewireme.com/roses-blog/shoes-allowed/
  4. http://bjsm.bmj.com/content/49/5/290.full#xref-ref-39-1