Ski boot modification posts

TRANSITIONING FROM FIT TO HIGH PERFORMANCE FUNCTION


That footwear can negatively impact the physiologic function of the user has been known for many decades. But the issue of the effect of footwear on athletic performance came into sharp focus in 1987 with the publication of the medical textbook, The Shoe in Sport (published German in 1987 as Der Schu im Sport). The Shoe in Sport brought together the collective expertise of 44 international authorities on orthopedics and biomechanics to focus their attention on the SHOE PROBLEM in the context of problems shoes can cause for athletes in terms of compromising performance and contributing to injury. The Shoe in Sport focusses on the medical orthopedic criteria in offering guidelines for the design of shoes for specific athletic activities including skiing and ice skating.

In the Introduction to the Shoe in Sport, Dr. med. B. Segesser and Prof. Dr. med. W, Pforringer state that the findings in the textbook should enable the interested reader to distinguish between hucksterism and humbug on the one side and the scientifically sound improvements in the athletic shoe on the other. The Shoe in Sport made it abundantly clear that it is not a question of if structures of footwear will affect the physiologic function of the user, it is a question of how structures of footwear will affect the physiologic function of the user and especially whether they will compromise athletic performance and/or contribute to injury.

With regard to guidelines for ski boots, the international authorities on orthopedics and biomechanics who contributed their expertise and knowledge to Part IV The Ski Boot took the position that, among a number of other things:

  • ………. the total immobilization by foam injection or compression by tight buckles are unphysiologic.
  • The ski boot and it’s shaft must be adapted to the technical skill of the skier, and the technical skills of the skier must be adapted to the preexisting biomechanical functions of the leg and the foot.
  • It (the design) should not make compromises at the expense of other joints ………
  • It (the ski boot) must represent the ideal connecting link between man and ski (steering and feedback).

The position of international authorities on orthopedics and biomechanics on the medical and biomechanical criteria for ski boots was succinct, concise and unequivocal:

…….total immobilization by foam injection (implying by any means) or compression (of the foot) by tight buckles are (both) unphysiologic.

Dr. E. Stussi,  Member of GOTS and Chief of the Biomechanical Laboratory ETH, Zurich, Switzerland made a prescient statement with implications for the future of knee injuries in skiing:

Improvements in the load acting on the ankle (implying load from improved fit) make it biomechanically very likely that the problems arising in the rather delicate knee joint will increase.

While the international authorities on orthopedics and biomechanics who contributed to The Shoe in Sport provided valuable guidelines for the design of the ski boot they did not offer a specification that would assist designers and those who work with ski boots in meeting the medical and biomechanical criteria in the guidelines. My hope and intent was that the Birdcage studies and the content of my US Patent 5,365,350 (issued on 11-30-1993, expired on 12-28-2005) would serve as a foundation on which to build a specification that would enable the structures of ski boots to be adjusted to accommodate the personal functional requirements of the skier.

The steps in my transition from Fit to High Performance Function

After the unprecedented success of my dorsal loading invention with Crazy Canuck, Steve Podborski, I used the same system with similar success in the boots of a small number of other racers. I also incorporated this system into my own and my spouses’ ski boots in conjunction with suitable liner modifications and a reduction of the ramp angle of the boot boards to just under 3 degrees which I had identified in about 1978 as the maximum angle for skier performance.

I can’t recall exactly when, but about 20 years ago I decided to move away from Lange ski boots. I purchased a pair Head World Cup 335 mm ski boots for myself and a pair of Head X-80 295 mm ski boots for my spouse. I say built because to me ski boots are raw material.

I had to completely disassemble the Head X-80s and drastically modify and reconfigure the components to adapt them to the morphology of my spouses’ feet and legs. The process took me about 35 hours. I was able to modify my Head World Cup liners to make them work without the same degree of modification. I made a dorsal loading system for my spouse similar to the one I made for Steve Podborski’s Lange ski boots.  But I was able to modify the existing Head tongue so it would adequately load the dorsum of my foot. The reason I went this route is that the shell of my Head World Cup boot is very stiff. This makes inserting my size 12 US men’s foot and a dorsal system, like I fabricated for my spouse, challenging. In the order of things the dorsal system is inserted after inserting the foot in the shell.

The photo below shows my Head liner after initial modifications.

The photo below shows the Lange tricot liner I used in my spouses’ Head boots on the left with no modification other than removing the Lange flow fit pads in the side pockets. I was unable sufficiently modify the liner that came with her Head X-80 boot. The version on the right in the photo below is the same liner after modifications i made for it work with the dorsal system shown in the photo underneath. The dorsal system in itself took many hours of painstaking effort to fabricate and fine tune.

With our modified Head boots fit with my dorsal loading technology my spouse and I would easily be classified as expert skiers. As recreational skiers with skiing limited to 10-15 days a season, most skiers would have no incentive to question the adequacy of their boots or especially devote time and effort towards finding ways to reach a higher level of performance. To the contrary, I found it disturbing that the ability to ski better than the majority of skiers fostered an intoxicating sense of superiority. But I knew what I didn’t know and I knew that I still had a lot to learn. In my mind, the transition required to realise our full performance potential was not yet complete.  I knew that the potential for improvement has no boundaries.

The transition to High Performance Function continues In my next post……….

THE 2018 SOELDEN GS: A LITMUS TEST OF DYNAMIC STABILITY

Challenging  course conditions, especially in GS, are the litmus test of dynamic stability. The 2018 World Cup GS at Soelden had challenging conditions in spades.

The ability to rapidly achieve dynamic stability across the inside edge of the outside ski is key to moving the Center of Force forward to the point where the biokinetic chain of the outside leg attains sufficient tension to enable the stretch reflex. The stretch reflex (SR) can then modulate pertubations due to asperities in snow surface and terrain with ankle strategies. The principle muscle in ankle balance synergies is the soleus. Dynamic stability enables a racer to float between turns, accelerate under gravity then land on line and load the outside ski. A racer with good dynamic stability is on and off the edges in milliseconds and back into the float phase. Like a skilled gymnast elite skiers and racers can choose their line and stick their landing. Tessa Worely excelled at this in the 2018 Soelden GS.

Tell Tale Signs of Dynamic Stability

Key indicators of dynamic stability are a quiet upper body and the speed at which a racer achieves their line and crosses over into the new turn with their upper body. It’s like watching a flat rock thrown low skipping off water; fly-skip-fly-skip.

In my post, WHY YOUNG TALENTED SKI RACERS FAIL AND EVENTUALLY QUIT RACING (1.), I discuss the 3 levels of balance:

  1. The first reaction is the myotatic stretch reflex, which appears in response to changes in the position of the ankle joints, and is recorded in the triceps surae muscles. This is the earliest mechanism, which increases the activity of the muscles surrounding a joint that is subject to destabilization. Spinal  reflex triggered by the myotatic stretch reflex response causes the muscle to contract resulting in the stiffening of the surrounding joints as a response to the stimulus that has disturbed the balance. For example, changes in the angle of the joints of the lower limbs are followed by a reflexive (fascial) tensioning of adjacent muscles. The subsequent release of the reaction prevents excessive mobility of the joints and stabilises the posture once again.
  2. The next reflex in the process of balancing is the balance-correcting response, which is evoked in response to a strongly destabilising stimulus. This reactive response has a multi-muscle range, and occurs almost simultaneously in the muscles of the lower limbs, torso and neck, while the mechanisms that initiate the reaction are centrally coordinated.
  3. The last of the three types of muscular reaction is the balance-stabilising response. In a situation of a sudden loss of balance, a myotatic stretch reflex first occurs and is then is followed by a balance correcting response, which prevents or attempts to prevent a fall.

I call these balance responses Green (postural reaction 1), Orange (postural reaction 2) and Red (postural reaction 3).

If a racer is no able to use the myotatic reflex (Green = Normal) balance response, the CNS shifts to Level 2 (Orange = Caution) or even Level 3 (Red = DANGER).

Level 1 balance is characterized by a stable, well-controlled upper body (aka quiet upper body) with well controlled and directed positions of the arms.

When the myotatic (stretch) reflex is compromised by restriction of the ankle flexion range required to tension the soleus the balance system will shift to level 2 or level 3 depending on the degree of interference. As the degree of interference with required range of ankle flexion increases the degree of reflexive balance will progress from small, rapid, reactive arm movements to gross reactive arm movements that eventually include gross movements of the torso.

The authors of the Polish skier balance study cited in my post state that ski boots exclude the ankle joint complex from the process of maintaining the stability of the body. However, I don’t believe this is the case with all skiers and especially all racers as evidenced by Soelden video of Tessa Worley, Federica Brignone and Michaela Shiffrin. In my next post I will discuss what I look for in analyzing that suggests dynamic stability and especially a lack of dynamic stability and the indications of compromise and the potential cause.

In the meantime, here’s something to think about.

Early in my boot modification career I came to the conclusion that some skiers, especially racers, were born with the right shape of feet and legs (2.) and this explained why they could ski in ski boots right out of the box with minimal or no modifications better than the majority of skiers even after extensive boot modifications. In a recent series of posts I discussed the results of the 2012 skate study that I modified hockey skates for; the NS (New Skates – Blue bars in the graphics below). The modifications I made were based on ski boot modifications that had resulted in dramatic improvement in performance and race results. Although I optimistically predicted improvements in performance metrics of at least 10% (110%) based on my experience with World Cup skiers, I knew that there was the possibility of a wild card competitive skater who was already close to their maximum performance in their OS (Own Skates – Red bars in the graphics below). If this were the case the skater would realize minimal improvement from the New Skates.

My previous posts only included the results for four competitive skaters. There were actually five competitive skaters in the study. Skater number 1 was the wild card. Look what happened to the results when the wild card skater was added.Look carefully at the graph of the Impulse Force below. Compare Skater number one’s Impulse Force results with the Peak Force results in the preceding graph.This raises the question: Do Tessa Worely, Federica Brignone, Mikaela Shiffrin and other top World Cup racers have the right shape of feet and legs or do they have the right modifications made to their ski boots.


  1. (https://skimoves.me/2017/02/15/why-young-talented-ski-racers-fail-and-eventually-quit-racing/)
  2. THE IDEAL SKIER’S FOOT AND LEG – https://wp.me/p3vZhu-qf

 

 

 

WHAT’S YOUR PQ? [PERFORMANCE QUOTIENT]

After my disastrous experience in 1977 with the mythical Perfect Fit with Crazy Canuck, Dave Murray (.1); one that transformed Mur from a World Cup racer to a struggling beginner, my work on ski boots became focussed on removing instead of adding material and making room to allow a skier’s foot to assume its natural configuration in the shell of the ski boot. As I improved the accommodation of a skiers’ neurobiomechanical functional requirements in the ski boot, skier performance improved in lockstep. I was merely reducing the structures of the boot that interfered with performance to enable a skier/racer to use the performance they already had.

Fit: The Antithesis of Human Function

Fit, by it’s definition of joining or causing to join together two or more elements so as to form a whole, is the antithesis (def: the direct opposite) of enabling the function of the human foot and lower limbs as one of the most dynamic organs in the human body. Fitting a ski boot to the foot and leg of a skier, especially a racer, equates with imposing a disability on them (2.). Although I didn’t realize it until I read The Shoe in Sport and learned of the barefoot studies done at the Human Performance Laboratory at the University of Calgary, my work on ski boots had transitioned from Fitting (disabling), by adding materials to liners to fill voids between the foot and leg and shell wall, to UnFitting (abling) by removing materials from liners and expanding and grinding boot shells so as to accommodate the neurobiomechanical functional requirements of the foot and leg of a skier.

But the big breakthrough for me came when Steve Podborksi won the 1981-81 World Cup Downhill title using the dorsal constraint system (Dorthotic) I developed and later patented. The Lange boot shells the device was used in had the least constraint of any ski boot I had ever worked with. The instantaneous quantum leap in Steve’s performance compared to the same shell using a conventional liner raised the question of how could a skier’s maximum performance be achieved and was there a way to compare to a skier’s performance in different ski boot/liner configurations to an optimal reference standard?

A reliable indicator that my un-fitting was trending in the right direction was that skiers consistently found that skiing became easier. For racers, coaches would typically report that the racer was skiing better. Improved race results served as further confirmation of my efforts. But these indicators were subjective. I wanted a way to not just measure performance with quantifiable metrics generated from data specific to the activity, I wanted to be able to compare the same metrics to a reference or baseline standard that represented the optimal performance of a skier or racer at a given moment in time. Without a way to measure and compare performance there is no way of knowing how a ski boot is affecting a skier or racer and especially no way of knowing how close they are to skiing at their maximum level of performance. I wanted to develop a skier Performance Quotient or PQ.

Definition of Quotient

  • Mathematics: – a result obtained by dividing one quantity by another.
  • a degree or amount of a specified quality or characteristic.

A skier Performance Quotient would capture baseline metrics from a skier’s performance in a ski boot that provides the optimal functional environment for the foot and lower limbs to the skier’s peformance in different ski boots including a skier’s current ski boot. The ski boot that provides the optimal functional environment for the foot and lower limbs would be designated as 100%. If the same metrics captured in a different ski boot were 78% of the reference standard, the skier’s PQ in the ski boot would represent a PQ of 78% against a possible 100% or 78/100.

Raising the bar of skier/racer function with body work and/or conditioning will raise the PQ. But it cannot close the PQ gap created by the performance limitations of the interference with neurobiomechanical function caused by their ski boot. Nor can trying harder or training more intensely overcome the limitations of a ski boot. Assuming 2 ski racers of equal athletic ability and mental strength, the racer with the ski boot that enables a higher PQ will dominate in competition. The only way to improve a skier’s PQ when it is less than 100% is to improve the functional environment of the ski boot.

In current ski boot design process, manufacturing and aesthetic considerations override skier functional requirements. An innovative approach to the design of the ski boot is needed. This is the subject of my next post.


  1. IN THE BEGINNING: HOW I GOT STARTED IN SKI BOOT MODIFICATIONS, May 12, 2013 – https://wp.me/p3vZhu-y
  2. LESS REALLY IS MORE, May 13, 2013 – https://wp.me/p3vZhu-N

 

WHY SHIFFRIN AND HIRSCHER ARE DOMINATING

Existing footwear does not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg.

MacPhail, US Patent 5,265,350 – November 30, 1993

Of all the figures who have influenced the development of the plastic shell ski boot over the years, the Australian, Sven Coomer, stands tall as one of the most significant and innovative. More recently, Coomer was involved with the development of Atomic’s race boot, the Redster, used by Marcel Hirscher and Mikaela Shiffrin. Coomer claims that the Redster allows the skier’s forefoot to flex and move naturally within the confines of the shell.

A 2014 article by Jackson Hogen quoted Coomer as saying:

This liberation of the previously stunted, frozen and crushed forefoot is what allows for the subtle edging and foot steering that initiates the slalom turns of World Cup champions Marcel Hirscher and Mikaela Shiffrin. (1.)

Four years, later Hirscher and Shiffrin are dominating the technical disciplines of the World Cup circuit.

The ability to establish balance on the outside foot and ski in milliseconds is dependent on the ability of the forefoot to fully spread and acquire fascial tensioning that extends to the ankle and knee. This is called time-to-stabilization. Although Coomer doesn’t mention them, a myriad of other factors are also critical; including the alignment of the big toe on the long axis of the foot and the optimal ramp angle.

Coomer suspects that if racers would only fit their boots more accurately, coupled with a dynamic molding inner boot medium between the foot and shell, and without down-sizing into short, narrow, thick-sidewall shells, their results just might improve. (1.)

In order to realize their maximum potential it is critical that racers and even recreational skiers have a ski boot fit with dynamic and predictable qualities that substantially match those of the foot and lower leg. Yet Coomer readily acknowledges:

Many racers believe they need downsized, super-stiff, ultra-narrow boots. The most accomplished alpine ski boot designer of the plastic era, Sven Coomer, believes that’s changing.(1.)

But then, he seems to retract his optimism when he says that after forty-five years as the Cassandra of the ski boot world, he knows all too well that just because you can prove you’re right, it doesn’t mean your advice will be heeded.

My observation is that since Hogen’s 2014 article, the situation with downsized, hyper-restrictive ski boots that severely compromise the dynamic nature of the architecture of the foot, has gotten worse. I have seen instances where after having ski boots properly fit, it took several full seasons for the competence of the balance to be fully restored after a skier or racer’s feet and legs were constrained for years in ski boots that were too small and too tightly fit.

Marcel Hirscher and Mikaela Shiffrin have heeded Coomer’s advice. Others choose to ignore him at their own peril. In so doing, they handicap their efforts and limit their race results.

In my next post I will start a series of posts on how to build a ski boot from the snow up; one that provides a fit with dynamic and predictable qualities that substantially match those of the foot and lower leg.


  1. The Master Boot Laster by Jackson Hogen: The International Skiing History Association – Article Date: Tuesday, June 3, 2014

SKI BOOT ASSESSMENT PROTOCOL

Step 1 of the synergy 5 Step performance Program described in my last post is a Footbed Check using the Novel Pedar insole pressure analysis system.

Step 3 of the program is the Ski Boot Assessment detailed below. As with the 5 Step performance Program, the Ski Boot Assessment protocol and report were intended to serve as a template to base future programs on. The assessment report was intended to provide clients with information on the effects of their ski boots on their performance and/or as a work order for them to take to a boot-fitter to have any necessary issues identified in the report addressed.  Synergy Sports Performance Consultants Ltd. did not sell products or perform boot modifications.

 



My next post will be called FOOTBEDS: THE GOOD, BAD AND THE UGLY.

 

 

 

 

PROBLEMS WITH EXISTING SKI BOOTS

As a segue to my post on Turntable Power and how it cantilevers ground reaction force acting along the running surface of the inside edge of the outside ski, I have decided to post the discussion on the problems with existing ski boots from my US Patent 5,265,350 with associated international patents. The patent was issued on November 30, 1993 (24 years ago) to me as the sole inventor and assigned to MACPOD Enterprises Ltd. (Toronto).

The objective of US Patent 5,265,350 and subsequent patents filed and granted to MACPOD was to identify problems with existing ski boots and offer solutions and a functional criteria for advancing the state-of the art going forward. Some of the problems noted and solutions offered, apply to footwear in general.

The final paragraph raises the issue of the limitations of conventional ski boots in terms of accommodating and enabling biomechanically generated forces such as torque from the mechanical force transfer points of the foot to the structure of the ski boot.

The following material is verbatim from the text of US Patent 5,265,350.


Problems with Existing Ski Boots

Existing footwear (ski boot design) does not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg. 

Although somewhat vaguely stated, a generally accepted theme has arisen over the years, one of indiscriminate envelopment and “overall restraint” applied to the foot and leg within the footwear. The stated position of various authorities skilled in the art of the design and fabrication of footwear for skiing is that the foot functions best when movement about its articulations is substantially prevented or restricted.

To serve this end, inner ski boot liners are usually formed around inanimate lasts or, alternatively, the foot and leg are inserted into an inner liner within the ski boot shell and foam is introduced into a bladder in the liner so as to totally occupy any free space between the foot and leg and the outer ski boot shell. The outer shell of the footwear is closed around this inner envelopment forming an encasement with which to secure and substantially immobilize the foot and leg. This is considered the optimum and, therefore, ideal form of envelopment. The perspective is that the physiologic structures of the foot are inherently weak and thus, unsuited for skiing. Enveloping the foot within an enclosure which makes it more rigid is thought to add the necessary strength with which to suitably adapt it for skiing. The reasoning being, that the foot and leg now having being suitably strengthened, can form a solid connection with the ski while the leg, now made more rigid, can better serve as a lever with which to apply edging force to the ski.

To some degree, the prior art (existing ski boot design) has acknowledged a need for the ankle joint to articulate in flexion. However, the prior art has not differentiated exactly how articulation of the ankle joint might be separated from the object of generalized and indiscriminate envelopment and thus made possible. Therefore, the theme of prior art (existing ski boot design) is inconsistent and lacks continuity.

The only disclosure known of a process wherein the separation of envelopment of the foot from articulation of the ankle joint is contained in U.S. Pat. No. 4,534,122, of which the present applicant is also the inventor. This material discloses a supportive structure (i.e Dorthotic) wherein restrictions to flexion of the ankle joint are essentially removed, support being provided from below the hinge of the ankle joint.

In keeping with the theme of indiscriminate envelopment and overall restraint, the following structures are generally common to all footwear for skiing disclosed by prior art (existing ski boot design):

(a) a continuous counter system which surrounds the foot and provides for the process of envelopment;

(b) an arrangement of pads or padding with which to envelope the foot;

(c) a substantially rigid outer shell which encases the structures employed for envelopment;

(d) an articulation of the ski boot lower outer shell and the cuff or cuffs which envelope the leg of the user, usually accomplished through a common axis or journal;

(e) a structure to brace and support the leg since prior art considers the ankle joint to be inherently weak and in need of support; and

(f) some form of resistance to movement of the cuff (shaft of the ski boot).

The prior art (existing boot design and boot fitting procedures) refers to the importance of a “neutral sub-talar joint”. The sub-talar joint is a joint with rotational capability which underlies and supports the ankle joint. The sub-talar joint is substantially “neutral” in bipedal function. That is to say that the foot is neither rolled inward or rolled outward.

If the foot can be substantially maintained in a neutral position with the arch supported and with a broad area of the inner aspect of the foot well padded, there will exist a good degree of comfort. Such a state of comfort exists because the foot is not able to roll inward (pronate) to a degree where significant mechanical forces can be set up which would allow it to bear against the inner surface of the boot shell. In effect, this means that initiation of the transition from a state of bipedal to a state of monopedal function, is prevented. This transition would normally be precipitated by an attempt to balance on one foot. If the foot is contained in a neutral position, traditional supportive footbeds (arch supports) are quite compatible with the mechanisms and philosophies of the prior art.

Problems arise when the foot is attempting a transition from a state of bipedal stance to monopedal stance. If the transition to monopedal stance or function can be completed without interference from the structures of the ski boot, all is fine and well. However, if the transition is allowed to proceed to a point where the mechanics associated with the monopedal function can establish significant horizontal forces, and the further movement of the foot is blocked before the transition can be completed, the skier will experience pain and discomfort at the points where the inner aspect of the foot bears against the structures of the footwear. This is the situation experienced by a majority of the skiers with prior art footwear. It is at this point where arch supports, if employed, also begin to cause discomfort. It should be noted that it is the normal tendency of the foot to pronate when weight bearing on one foot.

Footbeds (arch supports) may work in conventional boots (which traditionally do not allow natural biomechanics or movement of the foot to occur), but in a boot which accommodates and supports natural leg and foot articulation and function, arch supports can be detrimental.

When the foot attempts to pronate inside the ski boot, it is often the case that the ankle bone will come to bear against the inner surface of the boot shell. When contact of this nature occurs, pain and other related complications usually result. Since the consensus of those skilled in the art of ski boot design and modification is that pronation or the rolling inward of the foot is detrimental, and, thus, undesirable, provision is not made to allow for such movement. Rather, the structure of the footwear is intended to resist or even prevent it.

Thus, the problem with existing footwear arises due to the dynamic nature of the architecture of the foot. When the wearer is standing with the weight equally distributed between left and right feet so that the centre of mass of the wearer is manifesting itself in the centre between the feet, the architecture of the wearer’s foot assumes a specific configuration. As the wearer begins to shift his weight towards one foot so that the other foot bears proportionately less weight, the wearer’s centre of mass moves over the medial aspect of the weighted foot so as to assume a position of balance. In order for this movement of the wearer’s centre of mass to occur, the architecture of the weighted foot must undergo a progressive re-alignment. Existing footwear does not adequately anticipate this re-alignment of the architecture of the foot and thus such footwear inhibits the wearer’s ability to assume a balanced position.

A further problem with existing footwear is the fact that longitudinal relative movement between the foot and the footwear may occur. This happens, for example, when the forefoot/midfoot section of the foot is not adequately restrained under certain conditions, such as when flexion is occurring between the lower leg and the foot. Such longitudinal relative movement contributes to the disruption of biomechanical reference points associated with the dynamics of the ski and, in addition, results in a delay in the transmission of force between the leg and foot and the footwear.

Yet a further problem with existing footwear for skiing, in particular the rear entry type, relates to the obstruction of the leg in forward flexion. A relatively freely flexing gaiter or cuff (i.e. shaft) is necessary in order to permit the posterior muscle groups of the lower leg to modulate external force exerted on the footwear. This requires that the axis of the footwear be allowed to rotate so that small degrees of flexion/extension occur at the foot with the lower leg being relatively passive and that large degrees of flexion/extension occur as coordinated ankle, knee and hip flexion. The construction of the prior art requires flexion/extension to occur primarily at the knee and hip joints which is disadvantageous to the user.

While some types of rear entry boots do disclose gaiters or cuffs which provide a degree of relatively free flexion, there remains numerous problems, the most serious of which is the fact that the device employed to secure the foot of the user exerts, in addition to the downward directed force on the foot, a simultaneous rearward directed force on the leg which acts to resist forward flexion in spite of any free hinging action of the cuff. The result is an interference with the physiologic function of the foot and leg of the user.

Yet another problem resides in buckle or overlap type footwear. In order to provide for entry of the foot of the user and for resistance to flexion, plastic materials are employed for the outer shell which have flexural qualities. This is necessary in order to facilitate the aforementioned requirements. Plastic materials by their very nature tend to resist point loadings by a relaxation of the material at the point where stress is applied. This characteristic creates serious problems for two reasons. First, the teaching of this application is that force must be applied and maintained only to specific areas of the foot and leg of the user while allowing for unrestricted movement of other areas. The application and maintenance of such force by flexible plastic materials in the structures of prior art is necessarily difficult, if it is possible at all.

Second, the plastic materials in relaxing under the application of stress assume a new shape by moving into void areas. Thus, the probability is great that the plastic material will change shape so as to inhabit the very area required for the uninhibited displacement of the structures of the foot and leg. The result of these limitations is interference with the physiologic function of the user.

Top and rear entry footwear for skiing and skating necessarily have interior volumes greater than that required by the wearers foot and leg, particularly in the area over the instep, in order to accommodate entry. This additional volume makes the incorporation of structures designed to provide accurate and consistent support to specific areas necessarily difficult and ineffective. This results in reduced support for the foot and leg.

Another problem with conventional footwear relates to the flexion of the lower leg relative to the foot. It is desirable to provide a degree of resistance to such movement to assist in dampening movement of the mass of the skier relative to the ski resulting from, for example, a velocity change due to terrain changes and to assist the user in transferring energy to the ski. Adjustment of such resistance is desirable in order that the user may compensate for different physical makeup and different operating conditions. In present ski footwear, sources of resistance for such purpose are poorly controlled and often produce resistance curves inappropriate for the operating environment (i.e. temperature) thereby adversely affecting the balance and control of the user and creating a need for additional energy to be expended to provide correction. In many applications, resistance is achieved by deformation of shell structures thereby resulting in reduced support for the user’s foot and leg. If indeed provision is made for adjustment of flex resistance in the instances cited, it is very limited in terms of ability to suitably modify resistance curves.

Torque Transfer and The Turntable Effect

Yet a further problem relates to the efficient transfer of torque from the lower leg and foot to the footwear. When the leg is rotated inwardly relative to the foot by muscular effort, a torsional load is applied to the foot. Present footwear does not adequately provide support or surfaces on and against which the wearer can transfer biomechanically generated forces such as torque to the footwear. Alternatively, the footwear presents sources of resistance which interfere with the movements necessary to initiate such transfer. It is desirable to provide for appropriate movement and such sources of resistance in order to increase the efficiency of this torque transfer and, in so doing, enhance the turning response of the ski. 

In my next post, I will discuss Turntable Power in conjunction with the Over-Centre mechanism.

BOOT-FITTING 101: THE ESSENTIALS – SHELL FIT

In this post, I am going to discuss the process I follow to assess what I call the essential foot to shell clearances. This is a 2-step process.

Step 1 – Establish the clearances between the structures of the foot and the inner wall of the boot shell required for the foot to function.

Step 2 – Establish the physical connections between discrete restraint force transfer areas of the foot and the inner walls of the boot shell required for the effective force transfer to the ski, for containment of the foot required to support the processes of balance and for the coupling of the foot to specific mechanical references in the boot shell related to the running surface of the ski.

As a prelude to discussing shell fit, it is necessary to point out that a major shift is occuring in the area of focus on the human foot.

Until recently, most discussions on the human foot have focussed almost exclusively on the rearfoot; the ankle complex, the tibial-talar and sub-talar joints, ankle dorsiflexion and plantarflexion, ankle mobility, inversion, eversion, etc. This limited focus has been at the expense of an appreciation and understanding of the role of the forefoot and the complex lever mechanism that enables the first MTP joint to apply large forces to the ground. A study (1) published in 2004 commented:

The plantar aponeurosis (plantar fascia) is known to be a major contributor to arch support, but its role in transferring Achilles tendon loads to the forefoot remains poorly understood.

 Fascia is a sheet or band of fibrous tissue such as lies deep to the skin or invests muscles or various body organs.

The most plausible reason why the role of the  plantar aponeurosis in transferring Achilles tendon loads to the forefoot is poorly understood is that it has not been given much attention until recently.  

The above cited study concluded:

Plantar aponeurosis forces gradually increased during stance and peaked in late stance.

The almost exclusive focus of attention on the rearfoot has led to assumptions about the function of the foot as a system which are only now being called into question and found to be erroneous or invalid. One result is the erroneous assumption that the arch of the human foot is weak and collapses under the weight of the body. This has spawned a lucrative market for custom made arch supports intended to provide what is perceived as needed support for the arch of the foot.

In boot-fitting, the process of fascial tensioning, in which the height of the arch decreases and the forefoot splays, has been misinterpreted as an indication of a collapsing (implied failure) of the arch due to its inability to support the weight of the superincumbent body during skiing maneuvers. This has led to an almost universal perception and acceptance in skiing of custom arch supports as essential foundations for the foot and the most important part of a ski boot.

The Fascial Tension/SR Stance Connection

Plantar aponeurosis forces peak in late stance in the process of fascial tensioning where they act to maximally stiffen the foot in preparation for the application of propulsive force to the ground. When fascial tensioning of the plantar aponeurosis peaks, forward rotation of the shank is arrested by isometric contraction of the Achilles tendon. This is the shank angle associated with the SR Stance.

Immobilize – Support – Stabilize

Discussions of foot function in the context of the foot to shell clearances necessary for foot function and especially fascial tensioning, tend to be obscured by a consistent, persistent narrative in the ski industry spanning decades that the foot should be supported, stabilized and immobilized in a ski boot. Foot splay, associated with fascial arch tensioning, is viewed as a bad thing. Efforts are made to prevent foot splay with arch supports and custom formed liners in order to the fit the foot in the smallest possible boot size in the name of optimizing support.

In the new paradigm that exists today, the foot is increasingly viewed in the context of a deeply-rooted structure. In the design and fabrication of footwear, attention is now being directed to the accommodation of the  fascial architecture  and the importance of fascial tensioning as it pertains to the science of the human lever mechanism of the foot.

Fascial Tensioning and the Human Foot Lever

Fascial tensioning is critical to the stiffening of the foot for effective force transmission and to foot to core sequencing.

The body perceives impact forces that tend to disturb equilibrium as vibrations. It damps vibration by creating fascial tension in the arches of the foot and the lower limb. Supporting the structures of the foot, especially the arch, diminishes both the degree and speed of fascial tensioning to the detriment of the processes of balance and the ability to protect the tissues of the lower limbs through the process of damping of impact forces.

Dr. Emily Splichal has an excellent webinar on The Science of the Human Lever – Internal Fascial Architecture of the Foot as it pertains to foot to core sequencing – https://youtu.be/_35cQCoXp9U

The DIN Standard is Not a Foot Standard

A major problem for the human foot in a ski boot is the DIN standard toe shape. DIN stands for ‘Deutsches Institut für Normung’ which means ‘German Institute of Standardization’.

The DIN toe shape creates a standard interface for bindings. In a strong, healthy foot, the big toe or hallux should be aligned straight ahead on the center axis of the boot/ski. But as an interface for the human foot, the DIN standard toe shape of a ski boot is the equivalent of a round hole for a wedge-shaped peg.

The graphic below shows a photograph of a foot overlaid over a photograph of the ski boot for the same foot. The outline of the wall of the boot is shown in red. Even though the length of the boot shell is greater than the length of the foot, the big toe will be bent inward by the wall of the shell using the one finger space behind the heel shell length check.

screen-shot-2017-02-09-at-3-55-38-pm

The Importance of Foot Splay

The progressive fascial tensioning that occurs as CoM advances over the foot transforms foot into a rigid lever that enables the plantar foot to apply force the ground or to a structure underneath the plantar foot such as a ski or skate blade. Forefoot splay is important to the stiffening of the forefoot required for effective plantar to ground force transfer.

Ski boot performance is typically equated with shell last width. Performance boots are classified as narrow. Such boots typically have lasts ranging from 96 mm to 99 mm. Narrow boots are claimed to provide superior sensitivity and quick response, implying superior control of the ski.

The outside bone-to-bone width shown in the photo below is not quite 109 mm. The boot shell has been expanded. The 2 red arrows show the 5th and 1st toe joints (metatarsophalangeal joint or MTP joint). A prime hot spot in less than adequate shell width in the forefoot, is the 5th MTP joint. Even a minimal liner will narrow the boot shell width by 3 to 4 mm.

mt-width

Shell Check: Start Point 

I start with a skier standing in both boot shells with the insole in place from the liner then have them claw each foot forward in the shells using their toes until they can just feel the wall of the shell with the outside (medial) aspect of the big toe when they wiggle the toe up and down. If there is a finger space behind the heel, the shell is in the ball park.

A second check is made with the skier standing on one foot. Some allowance for the correct alignment of the big toe  can be made by grinding the inside of the shell where it is forcing the big toe inward. When fully weighted, a fascially tensioned forefoot will splay approximately 3 mm for a female and 5 mm for a male.  The ball shaped protrusion of the 5th MTP joint is typically almost directly below the toe buckle of a 4 – buckle boot.

Once a skier can stand on one foot in each shell with adequate space for normal foot splay, the rear foot can be checked for clearance. The usual sources of problems are the inside ankle bone (medial malleolus) and the navicular and/or the medial tarsal bone. A good way to locate the prime areas of contact is to apply a thick face cream or even toothpaste to the inside ankle bones then carefully insert the foot into the boot shell, stand on it to make contact with the shell, then carefully remove the foot. The cream will leave tell tale smears on the boot shell which can then be marked with a felt pen.

Getting Step 1 successfully completed can involve alternating back and forth between forefoot and rearfoot clearance. Until, both areas are right, full normal foot splay may not occur. Step 2 is done in conjunction with liner modifications which can be a process in itself and is often the most problematic aspect of creating an environment in a ski boot that accommodates and supports foot function especially fascial tensioning.


  1. Dynamic loading of the plantar aponeurosis in walking – Erdemir A1, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA  – J Bone Joint Surg Am. 2004 Mar;86-A(3):546-52.