Ski boot modification posts








Step 1 of the synergy 5 Step performance Program described in my last post is a Footbed Check using the Novel Pedar insole pressure analysis system.

Step 3 of the program is the Ski Boot Assessment detailed below. As with the 5 Step performance Program, the Ski Boot Assessment protocol and report were intended to serve as a template to base future programs on. The assessment report was intended to provide clients with information on the effects of their ski boots on their performance and/or as a work order for them to take to a boot-fitter to have any necessary issues identified in the report addressed.  Synergy Sports Performance Consultants Ltd. did not sell products or perform boot modifications.


My next post will be called FOOTBEDS: THE GOOD, BAD AND THE UGLY.






Almost 40 years ago to the day, the head of the Whistler Pro Patrol, whose boots I had worked on, introduced me to Nancy Greene in the Roundhouse restaurant on top of Whistler Mountain. The rest is, as they say, history. Nancy asked me if I would work on her ski boots. She was so impressed by the results of my work that she approached the National Ski Team to make arrangements for me to work with some of Canada’s best racers.

Recently, while going through some archived files, I found copies of Nancy’s communication with the Program Director of the National Ski Team, Andrzej Kozbial. When Nancy approached me about working with our National Team, I stressed to her that I did not see any potential arrangement with the team as a job opportunity but instead as a vehicle where I could gain further experience and knowledge while providing a crucial service to the team and furthering the sport of skiing.

The graphic below is an excerpt copied from Nancy’s first letter of April 26, 1978 to the National Ski Team Program Director.

At the time that I wrote my US Patent 5,265,350 in early 1992, the intent and purpose of the detailed and lengthy specification was to provide a repository of the knowledge I had acquired to date to serve as a legacy for skiers and skiing to help advance the sport. While this information was in support of the inventions disclosed in the patent, the majority of the information was not subject to protection under the terms of the patent. The information was open access to the world. This was my intent.

In spring of 2000, I formed a company with 2 partners for the 2000-2001 ski season called Synergy Sports Performance Consultants Ltd. The objective of the venture was to gain further experience and knowledge and create a model that could be used as a template for future skier performance programs.

The following series of graphics are from Power Point presentations synergy made to ski schools.

The following graphic is the poster that described the synergy 5 Step Performance Program.

5 Step Performance Program description

The synergy Analysis Program looks at how your body interfaces with your ski equipment; primarily your footbeds and boots because this is the connection to your equipment and through it to the snow.

Synergy offers the program as a package made up of 5 components. They can either be taken as the complete package [recommended], several components or steps at once, or one component at time. Synergy recommends that you begin at step 1 and follow the sequence in numerical order. But the order can be arranged however you wish to suit your needs. The choice is yours.

1.Biomechanical Assessment

Good foot function is the key to control. That’s why the first thing we thing we assess is your biomechanical function. What that means is that we look at how well your foot and lower limb works. The examination is done by a podiatrist who looks at how your foot functions and how the lower limbs all connect.  Then we see how effectively your feet interface with the ground by putting you on insoles that read the pressures under your feet. We coach you through some balance movements while we watch how your foot functions while our computer records the results

2. Footbed Assessment

Footbeds can have a positive, neutral or negative effect on the function of your feet.

That’s why the next thing we check is how your foot interfaces with your footbed or orthotic.  We make sure that it allows your foot to function as well as it should without one.  And if your foot needs some assistance for optimal function we make sure the footbed is helping your foot do what it needs to do.

3. Ski Boot Assessment

Now that your foot is functioning optimally we make sure your ski boot lets it keep functioning. We conduct a thorough examination of your boot and provide you with a report that tells you how your boot is affecting your performance. Most important, we tell you what has to be done to fix the problem.

4. Kinesthetic Training

Skiing is about making the right moves. Kinesthetic Training is next. It teaches you how to tell when your body is making those moves. What is Kinesthetic Training? In simple terms it means to train your body to associate a feeling or sense with the right movements made at the right time. It is feeling and bringing about an awareness so you know when you are doing it right because we have taken you there and you have felt it. A picture may be worth a thousand words, but in skiing a feeling is worth a thousand pictures. We bring you to understand what you should feel in your foot at the start of the turn and then what it feels like to settle and balance onto the foot that drives the ski. By acquiring this sense you become more aware of how to allow your foot to transfer energy directly to the edge of the ski by using the body the way it was designed to be used. Remember, your body was not made to be a lever.

5. On-Hill Data Collection

This is where everything comes together. We move to the ski hill for this part of the package. We meet up top on Whistler or Blackcomb Mountain. We put our pressure insoles in your ski boots.  A pair of cables from the insoles goes up your ski pants where it connects to the data box [a kind of mini computer] we attached to your waistband.  Then we go out for a run on moderate, groomed terrain.  We record data in three takes in medium radius turns at a speed you are most comfortable with. While this is happening we videotape your skiing. Then we head into the lodge and synchronize the video with your foot pressure data. When this is done we watch your foot function in your boots on the computer screen on one side while we study your ski video on the other side of the screen. This way we confirm that your foot is functioning optimally as confirmed by analyzing your movement patterns and the timing of your skills.

My next post will be on the synergy Boot Assessment program.



As a segue to my post on Turntable Power and how it cantilevers ground reaction force acting along the running surface of the inside edge of the outside ski, I have decided to post the discussion on the problems with existing ski boots from my US Patent 5,265,350 with associated international patents. The patent was issued on November 30, 1993 (24 years ago) to me as the sole inventor and assigned to MACPOD Enterprises Ltd. (Toronto).

The objective of US Patent 5,265,350 and subsequent patents filed and granted to MACPOD was to identify problems with existing ski boots and offer solutions and a functional criteria for advancing the state-of the art going forward. Some of the problems noted and solutions offered, apply to footwear in general.

The final paragraph raises the issue of the limitations of conventional ski boots in terms of accommodating and enabling biomechanically generated forces such as torque from the mechanical force transfer points of the foot to the structure of the ski boot.

The following material is verbatim from the text of US Patent 5,265,350.

Problems with Existing Ski Boots

Existing footwear (ski boot design) does not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg. 

Although somewhat vaguely stated, a generally accepted theme has arisen over the years, one of indiscriminate envelopment and “overall restraint” applied to the foot and leg within the footwear. The stated position of various authorities skilled in the art of the design and fabrication of footwear for skiing is that the foot functions best when movement about its articulations is substantially prevented or restricted.

To serve this end, inner ski boot liners are usually formed around inanimate lasts or, alternatively, the foot and leg are inserted into an inner liner within the ski boot shell and foam is introduced into a bladder in the liner so as to totally occupy any free space between the foot and leg and the outer ski boot shell. The outer shell of the footwear is closed around this inner envelopment forming an encasement with which to secure and substantially immobilize the foot and leg. This is considered the optimum and, therefore, ideal form of envelopment. The perspective is that the physiologic structures of the foot are inherently weak and thus, unsuited for skiing. Enveloping the foot within an enclosure which makes it more rigid is thought to add the necessary strength with which to suitably adapt it for skiing. The reasoning being, that the foot and leg now having being suitably strengthened, can form a solid connection with the ski while the leg, now made more rigid, can better serve as a lever with which to apply edging force to the ski.

To some degree, the prior art (existing ski boot design) has acknowledged a need for the ankle joint to articulate in flexion. However, the prior art has not differentiated exactly how articulation of the ankle joint might be separated from the object of generalized and indiscriminate envelopment and thus made possible. Therefore, the theme of prior art (existing ski boot design) is inconsistent and lacks continuity.

The only disclosure known of a process wherein the separation of envelopment of the foot from articulation of the ankle joint is contained in U.S. Pat. No. 4,534,122, of which the present applicant is also the inventor. This material discloses a supportive structure (i.e Dorthotic) wherein restrictions to flexion of the ankle joint are essentially removed, support being provided from below the hinge of the ankle joint.

In keeping with the theme of indiscriminate envelopment and overall restraint, the following structures are generally common to all footwear for skiing disclosed by prior art (existing ski boot design):

(a) a continuous counter system which surrounds the foot and provides for the process of envelopment;

(b) an arrangement of pads or padding with which to envelope the foot;

(c) a substantially rigid outer shell which encases the structures employed for envelopment;

(d) an articulation of the ski boot lower outer shell and the cuff or cuffs which envelope the leg of the user, usually accomplished through a common axis or journal;

(e) a structure to brace and support the leg since prior art considers the ankle joint to be inherently weak and in need of support; and

(f) some form of resistance to movement of the cuff (shaft of the ski boot).

The prior art (existing boot design and boot fitting procedures) refers to the importance of a “neutral sub-talar joint”. The sub-talar joint is a joint with rotational capability which underlies and supports the ankle joint. The sub-talar joint is substantially “neutral” in bipedal function. That is to say that the foot is neither rolled inward or rolled outward.

If the foot can be substantially maintained in a neutral position with the arch supported and with a broad area of the inner aspect of the foot well padded, there will exist a good degree of comfort. Such a state of comfort exists because the foot is not able to roll inward (pronate) to a degree where significant mechanical forces can be set up which would allow it to bear against the inner surface of the boot shell. In effect, this means that initiation of the transition from a state of bipedal to a state of monopedal function, is prevented. This transition would normally be precipitated by an attempt to balance on one foot. If the foot is contained in a neutral position, traditional supportive footbeds (arch supports) are quite compatible with the mechanisms and philosophies of the prior art.

Problems arise when the foot is attempting a transition from a state of bipedal stance to monopedal stance. If the transition to monopedal stance or function can be completed without interference from the structures of the ski boot, all is fine and well. However, if the transition is allowed to proceed to a point where the mechanics associated with the monopedal function can establish significant horizontal forces, and the further movement of the foot is blocked before the transition can be completed, the skier will experience pain and discomfort at the points where the inner aspect of the foot bears against the structures of the footwear. This is the situation experienced by a majority of the skiers with prior art footwear. It is at this point where arch supports, if employed, also begin to cause discomfort. It should be noted that it is the normal tendency of the foot to pronate when weight bearing on one foot.

Footbeds (arch supports) may work in conventional boots (which traditionally do not allow natural biomechanics or movement of the foot to occur), but in a boot which accommodates and supports natural leg and foot articulation and function, arch supports can be detrimental.

When the foot attempts to pronate inside the ski boot, it is often the case that the ankle bone will come to bear against the inner surface of the boot shell. When contact of this nature occurs, pain and other related complications usually result. Since the consensus of those skilled in the art of ski boot design and modification is that pronation or the rolling inward of the foot is detrimental, and, thus, undesirable, provision is not made to allow for such movement. Rather, the structure of the footwear is intended to resist or even prevent it.

Thus, the problem with existing footwear arises due to the dynamic nature of the architecture of the foot. When the wearer is standing with the weight equally distributed between left and right feet so that the centre of mass of the wearer is manifesting itself in the centre between the feet, the architecture of the wearer’s foot assumes a specific configuration. As the wearer begins to shift his weight towards one foot so that the other foot bears proportionately less weight, the wearer’s centre of mass moves over the medial aspect of the weighted foot so as to assume a position of balance. In order for this movement of the wearer’s centre of mass to occur, the architecture of the weighted foot must undergo a progressive re-alignment. Existing footwear does not adequately anticipate this re-alignment of the architecture of the foot and thus such footwear inhibits the wearer’s ability to assume a balanced position.

A further problem with existing footwear is the fact that longitudinal relative movement between the foot and the footwear may occur. This happens, for example, when the forefoot/midfoot section of the foot is not adequately restrained under certain conditions, such as when flexion is occurring between the lower leg and the foot. Such longitudinal relative movement contributes to the disruption of biomechanical reference points associated with the dynamics of the ski and, in addition, results in a delay in the transmission of force between the leg and foot and the footwear.

Yet a further problem with existing footwear for skiing, in particular the rear entry type, relates to the obstruction of the leg in forward flexion. A relatively freely flexing gaiter or cuff (i.e. shaft) is necessary in order to permit the posterior muscle groups of the lower leg to modulate external force exerted on the footwear. This requires that the axis of the footwear be allowed to rotate so that small degrees of flexion/extension occur at the foot with the lower leg being relatively passive and that large degrees of flexion/extension occur as coordinated ankle, knee and hip flexion. The construction of the prior art requires flexion/extension to occur primarily at the knee and hip joints which is disadvantageous to the user.

While some types of rear entry boots do disclose gaiters or cuffs which provide a degree of relatively free flexion, there remains numerous problems, the most serious of which is the fact that the device employed to secure the foot of the user exerts, in addition to the downward directed force on the foot, a simultaneous rearward directed force on the leg which acts to resist forward flexion in spite of any free hinging action of the cuff. The result is an interference with the physiologic function of the foot and leg of the user.

Yet another problem resides in buckle or overlap type footwear. In order to provide for entry of the foot of the user and for resistance to flexion, plastic materials are employed for the outer shell which have flexural qualities. This is necessary in order to facilitate the aforementioned requirements. Plastic materials by their very nature tend to resist point loadings by a relaxation of the material at the point where stress is applied. This characteristic creates serious problems for two reasons. First, the teaching of this application is that force must be applied and maintained only to specific areas of the foot and leg of the user while allowing for unrestricted movement of other areas. The application and maintenance of such force by flexible plastic materials in the structures of prior art is necessarily difficult, if it is possible at all.

Second, the plastic materials in relaxing under the application of stress assume a new shape by moving into void areas. Thus, the probability is great that the plastic material will change shape so as to inhabit the very area required for the uninhibited displacement of the structures of the foot and leg. The result of these limitations is interference with the physiologic function of the user.

Top and rear entry footwear for skiing and skating necessarily have interior volumes greater than that required by the wearers foot and leg, particularly in the area over the instep, in order to accommodate entry. This additional volume makes the incorporation of structures designed to provide accurate and consistent support to specific areas necessarily difficult and ineffective. This results in reduced support for the foot and leg.

Another problem with conventional footwear relates to the flexion of the lower leg relative to the foot. It is desirable to provide a degree of resistance to such movement to assist in dampening movement of the mass of the skier relative to the ski resulting from, for example, a velocity change due to terrain changes and to assist the user in transferring energy to the ski. Adjustment of such resistance is desirable in order that the user may compensate for different physical makeup and different operating conditions. In present ski footwear, sources of resistance for such purpose are poorly controlled and often produce resistance curves inappropriate for the operating environment (i.e. temperature) thereby adversely affecting the balance and control of the user and creating a need for additional energy to be expended to provide correction. In many applications, resistance is achieved by deformation of shell structures thereby resulting in reduced support for the user’s foot and leg. If indeed provision is made for adjustment of flex resistance in the instances cited, it is very limited in terms of ability to suitably modify resistance curves.

Torque Transfer and The Turntable Effect

Yet a further problem relates to the efficient transfer of torque from the lower leg and foot to the footwear. When the leg is rotated inwardly relative to the foot by muscular effort, a torsional load is applied to the foot. Present footwear does not adequately provide support or surfaces on and against which the wearer can transfer biomechanically generated forces such as torque to the footwear. Alternatively, the footwear presents sources of resistance which interfere with the movements necessary to initiate such transfer. It is desirable to provide for appropriate movement and such sources of resistance in order to increase the efficiency of this torque transfer and, in so doing, enhance the turning response of the ski. 

In my next post, I will discuss Turntable Power in conjunction with the Over-Centre mechanism.


After my last post BOOT-FITTING 101: THE ESSENTIALS – SHELL FIT, I received an email from a Whistler skier asking a number of questions. I have copied and pasted the questions into the post below and inserted my answers

Whistler Skier: After reading your last two posts and going through all the information about boot fit, the tongue and where your shin should contact the boot/liner, I probably need  to punch the shells a bit wider in the ankle area of the navicular bone (it definitely needs more room when I go from bipedal to monopedal stance).

Answer: Make sure forefoot width is adequate first.

Whistler Skier: 

  • Do you want a full finger width between all parts of the shell and your foot?

Answer: No. Just behind the heel. A few mm clearance to 1st and 5th toe joints and inside ankle bones is usually sufficient if the liner is thin enough in those areas.

Whistler Skier: 

  • Should I just experiment with padding of different thicknesses over my forefoot to try and keep my foot in contact with the bottom of the boot?

Answer: TONGUE CHECK will be the subject of a future BOOT-FITTING 101: THE ESSENTIALS post.

Whistler Skier: 

  • When I put the boot on and lightly buckled, I can still ‘stand on my toes’, so:
    • Is that because my foot is not sitting in the heel pocket?

Answer: I suspect you aren’t standing in an SR Stance. If you were, you would not be able to stand on your toes.

Whistler Skier: 

  • I gather from your postings that I don’t want to add foam to the front ‘crook’ of my ankle to hold it in the heel pocket because it will impede the natural ankle movement on flexion?

Answer: Yes. It might not impede the natural ankle movement. But at the same time, L-pads do nothing useful if the foot is stiffened by fascial tension. It is the age old problem of what is easier to nail to a tree, liquid Jello or frozen Jello?

Whistler Skier: 

  • If so, how do I get my heel to stay in the heel pocket? (do I want it there?)

Answer: Wedge fit loading of the instep of the foot with forefoot portion of the boot tongue. The key is ensuring fascial tensioning can occur in the boot because it makes the foot behave as it were solid, not malleable. Conventional boot fitting strategies attempt to achieve this objective by encasing the foot with a form fitting medium. This has the exact opposite effect. It actually prevents fascial tensioning.

Whistler Skier: 

  • Should I hold off on punching the ankle area?

Answer: For the time being. If it is close, skiing will confirm whether or not the space is adequate.

Whistler Skier: 

  • i.e., Is the space already large enough?

Answer:  I don’t know. See above.

Whistler Skier: 

  • Is it the cuff of the boot that provides control in conjunction with the sole of the foot?  My shin seems to contact the front cuff of the boot right about where your diagrams indicate it should and there is no pressure further down the cuff.

Answer: Sounds good.

The key that has literally been under everyone’s feet for decades, while they threw out nonsensical theories on skier balance, is what I call Ground Control. Given the correct sequencing of events, fascial tensioning in combination with pronation of the outside foot in a turn, enable pelvic rotation of the femur to extend the ground (snow) under the inside edge of the outside ski up under the base of the ski.

The mechanics of Ground Control has the effect of bringing the ground (snow) up under the entire ski base and foot thus allowing a skier to actually balance on the outside ski as if they were standing with their outside foot in full contact with solid ground (snow). This was my hypothesis that the Birdcage experiments confirmed in 1991.



In this post, I am going to discuss the process I follow to assess what I call the essential foot to shell clearances. This is a 2-step process.

Step 1 – Establish the clearances between the structures of the foot and the inner wall of the boot shell required for the foot to function.

Step 2 – Establish the physical connections between discrete restraint force transfer areas of the foot and the inner walls of the boot shell required for the effective force transfer to the ski, for containment of the foot required to support the processes of balance and for the coupling of the foot to specific mechanical references in the boot shell related to the running surface of the ski.

As a prelude to discussing shell fit, it is necessary to point out that a major shift is occuring in the area of focus on the human foot.

Until recently, most discussions on the human foot have focussed almost exclusively on the rearfoot; the ankle complex, the tibial-talar and sub-talar joints, ankle dorsiflexion and plantarflexion, ankle mobility, inversion, eversion, etc. This limited focus has been at the expense of an appreciation and understanding of the role of the forefoot and the complex lever mechanism that enables the first MTP joint to apply large forces to the ground. A study (1) published in 2004 commented:

The plantar aponeurosis (plantar fascia) is known to be a major contributor to arch support, but its role in transferring Achilles tendon loads to the forefoot remains poorly understood.

 Fascia is a sheet or band of fibrous tissue such as lies deep to the skin or invests muscles or various body organs.

The most plausible reason why the role of the  plantar aponeurosis in transferring Achilles tendon loads to the forefoot is poorly understood is that it has not been given much attention until recently.  

The above cited study concluded:

Plantar aponeurosis forces gradually increased during stance and peaked in late stance.

The almost exclusive focus of attention on the rearfoot has led to assumptions about the function of the foot as a system which are only now being called into question and found to be erroneous or invalid. One result is the erroneous assumption that the arch of the human foot is weak and collapses under the weight of the body. This has spawned a lucrative market for custom made arch supports intended to provide what is perceived as needed support for the arch of the foot.

In boot-fitting, the process of fascial tensioning, in which the height of the arch decreases and the forefoot splays, has been misinterpreted as an indication of a collapsing (implied failure) of the arch due to its inability to support the weight of the superincumbent body during skiing maneuvers. This has led to an almost universal perception and acceptance in skiing of custom arch supports as essential foundations for the foot and the most important part of a ski boot.

The Fascial Tension/SR Stance Connection

Plantar aponeurosis forces peak in late stance in the process of fascial tensioning where they act to maximally stiffen the foot in preparation for the application of propulsive force to the ground. When fascial tensioning of the plantar aponeurosis peaks, forward rotation of the shank is arrested by isometric contraction of the Achilles tendon. This is the shank angle associated with the SR Stance.

Immobilize – Support – Stabilize

Discussions of foot function in the context of the foot to shell clearances necessary for foot function and especially fascial tensioning, tend to be obscured by a consistent, persistent narrative in the ski industry spanning decades that the foot should be supported, stabilized and immobilized in a ski boot. Foot splay, associated with fascial arch tensioning, is viewed as a bad thing. Efforts are made to prevent foot splay with arch supports and custom formed liners in order to the fit the foot in the smallest possible boot size in the name of optimizing support.

In the new paradigm that exists today, the foot is increasingly viewed in the context of a deeply-rooted structure. In the design and fabrication of footwear, attention is now being directed to the accommodation of the  fascial architecture  and the importance of fascial tensioning as it pertains to the science of the human lever mechanism of the foot.

Fascial Tensioning and the Human Foot Lever

Fascial tensioning is critical to the stiffening of the foot for effective force transmission and to foot to core sequencing.

The body perceives impact forces that tend to disturb equilibrium as vibrations. It damps vibration by creating fascial tension in the arches of the foot and the lower limb. Supporting the structures of the foot, especially the arch, diminishes both the degree and speed of fascial tensioning to the detriment of the processes of balance and the ability to protect the tissues of the lower limbs through the process of damping of impact forces.

Dr. Emily Splichal has an excellent webinar on The Science of the Human Lever – Internal Fascial Architecture of the Foot as it pertains to foot to core sequencing –

The DIN Standard is Not a Foot Standard

A major problem for the human foot in a ski boot is the DIN standard toe shape. DIN stands for ‘Deutsches Institut für Normung’ which means ‘German Institute of Standardization’.

The DIN toe shape creates a standard interface for bindings. In a strong, healthy foot, the big toe or hallux should be aligned straight ahead on the center axis of the boot/ski. But as an interface for the human foot, the DIN standard toe shape of a ski boot is the equivalent of a round hole for a wedge-shaped peg.

The graphic below shows a photograph of a foot overlaid over a photograph of the ski boot for the same foot. The outline of the wall of the boot is shown in red. Even though the length of the boot shell is greater than the length of the foot, the big toe will be bent inward by the wall of the shell using the one finger space behind the heel shell length check.


The Importance of Foot Splay

The progressive fascial tensioning that occurs as CoM advances over the foot transforms foot into a rigid lever that enables the plantar foot to apply force the ground or to a structure underneath the plantar foot such as a ski or skate blade. Forefoot splay is important to the stiffening of the forefoot required for effective plantar to ground force transfer.

Ski boot performance is typically equated with shell last width. Performance boots are classified as narrow. Such boots typically have lasts ranging from 96 mm to 99 mm. Narrow boots are claimed to provide superior sensitivity and quick response, implying superior control of the ski.

The outside bone-to-bone width shown in the photo below is not quite 109 mm. The boot shell has been expanded. The 2 red arrows show the 5th and 1st toe joints (metatarsophalangeal joint or MTP joint). A prime hot spot in less than adequate shell width in the forefoot, is the 5th MTP joint. Even a minimal liner will narrow the boot shell width by 3 to 4 mm.


Shell Check: Start Point 

I start with a skier standing in both boot shells with the insole in place from the liner then have them claw each foot forward in the shells using their toes until they can just feel the wall of the shell with the outside (medial) aspect of the big toe when they wiggle the toe up and down. If there is a finger space behind the heel, the shell is in the ball park.

A second check is made with the skier standing on one foot. Some allowance for the correct alignment of the big toe  can be made by grinding the inside of the shell where it is forcing the big toe inward. When fully weighted, a fascially tensioned forefoot will splay approximately 3 mm for a female and 5 mm for a male.  The ball shaped protrusion of the 5th MTP joint is typically almost directly below the toe buckle of a 4 – buckle boot.

Once a skier can stand on one foot in each shell with adequate space for normal foot splay, the rear foot can be checked for clearance. The usual sources of problems are the inside ankle bone (medial malleolus) and the navicular and/or the medial tarsal bone. A good way to locate the prime areas of contact is to apply a thick face cream or even toothpaste to the inside ankle bones then carefully insert the foot into the boot shell, stand on it to make contact with the shell, then carefully remove the foot. The cream will leave tell tale smears on the boot shell which can then be marked with a felt pen.

Getting Step 1 successfully completed can involve alternating back and forth between forefoot and rearfoot clearance. Until, both areas are right, full normal foot splay may not occur. Step 2 is done in conjunction with liner modifications which can be a process in itself and is often the most problematic aspect of creating an environment in a ski boot that accommodates and supports foot function especially fascial tensioning.

  1. Dynamic loading of the plantar aponeurosis in walking – Erdemir A1, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA  – J Bone Joint Surg Am. 2004 Mar;86-A(3):546-52.


What if you used your hands like you used your feet?

Bind your hands with tape and then try typing. Instead of using the muscles and joints of the fingers (intrinsic), you’d peck at the keyboard using excessive motion of the wrists (and extrinsic musculature), leading to intrinsic muscle atrophy and extrinsic muscle (and related joint) overuse. – Katy Bowman, Nutritious Movement FaceBook Group, April 20, 2016 and author of Whole Body Barefoot: Transitioning Well to Minimal Footwear

Bowman wasn’t talking about what happens when you put your foot in tightly-fitting ski boots. She was only talking about what happens to most people’s feet in their everyday shoes. Binding your feet in tightly-fitting ski boots is infinitely worse in terms of making it impossible to effectively use all the muscles in your legs to coordinate balance and initiate precise movement. But in fact, this is the whole idea behind the ski boot. The holy grail in skiing is the fit of a ski boot that perfectly mirrors the shape of the foot and lower leg. In other words, the objective is to render the human foot completely dysfunctional.

“The bootmaker, ignorant of the relative use and importance of the different parts of the foot, has steadily persisted for centuries, and at this day usually persists, in so shaping the shoe that the great toe is forced upon the other toes more or less out of its right line with the heel. (1)

“The Problems in Existing Ski Boots

Existing ski boots do not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg. Thus, the problem with existing ski boots arises due to the dynamic nature of the architecture of the foot”. (2)

One hundred and thirty years after the article was published in the Scientific American, not much has changed. But it gets worse.

“The foot may have been distorted by wearing improperly made shoes, and the person may have become accustomed to the bad-shaped shoe.” (2)

“The less a shoe does to a foot, the better for the foot. A shoe should stay out of the foot’s way. In it’s most elemental form, shoe has only two functions; as a non-intrusive protective foot covering and as an ornamental dressing. The moment a shoe assumes a therapeutic function for the average foot, the foot is in trouble. (3)

“The worst thing shoes do, according to Bowman, Rossi and others? Tilt the whole body forward by elevating the heel so it is higher than the forefoot. In ski boots, I call this the Net Ramp Angle.

Last ski season, I learned more about skiing than in all the years since I started down this road in 1973. Prior to last season, I knew that a Net Ramp Angle of more than about 3 degrees had an adverse effect on stance, associated balance, ski control and especially the ability to move with precision. But I had no idea just how critical ramp angle is until I reduced the ramp angle of the boot boards in my own ski boots from 3.0 degrees to 2.5 (my bindings are zero ramp). Then the whole world changed. In working with other skiers and racers I found that they were sensitive to changes of one tenth of a degree.

Jessi Stensland, a high performance athlete, talks about how shoes affected her performance and served as the inspiration for FOOT FREEX in a the video in the following link –!about/c1nx6

After working with Whistler Ski Pro Matt since skiing started last fall it is only in the past few days that Matt’s feet were finally set free and after thousands of hours on skis, he finally knows, for the first time, what it is like to truly ski. Mat’s problem was not a lack of fitness and/or athletic ability. Matt’s problem is his large boned feet that cannot function in a ski boot without extensive modifications. I will explain, in graphic detail, what had to be done to Matt’s boots in my next post.


2. US Patent 5,265,350 1992 – MACPHAIL, November 30, 1993

3. Footwear: The Primary Cause of Foot Disorders – Willam A. Rossi – “!references/c19n”>!references/c19n