myotatic reflex

LEARN THE SR STANCE IN 3 EASY STEPS

This post was originally published on October 23, 2016. I have revised the post to clarify that the SR Stance applies to the load phase of a turn that occurs in what is commonly referred to as the bottom of a turn and that the joint angles of the SR Stance are configured by the major muscles in isometric contraction. When external forces cause the muscles to lengthen or stretch this will trigger the myotatic or stretch reflex. Because the myotactic reflex is a spinal reflex it is activated in 1 to 2 thousandths of a second. As such, it is both rapid and powerful.


The SR Stance configures some of the most powerful muscles in the body in a state of isometric contraction so that the powerful myotactic stretch reflex can maintain the angles of the ankle, knee, and hip and keep the CoM of a skier in balance on their outside ski in the most powerful position in the load phase of a turn.

The SR Stance is best learned outside the ski boot in an environment where the feet and legs are free from any influences. One of the benefits of learning an SR Stance outside the ski boot is that, once learned, it provides a reference against which to assess whether a ski boot supports the functional parameters of the skier. If it doesn’t, the SR Stance can be used as a reference to guide equipment modification and establish when and if it meets the functional requirements of the skier.

The SR Stance tensions the pelvis from below and above; below from the balls of the feet through the PA-soleus-gastrocnemius-hamstring muscles to the pelvis and above from the shoulders-latissimus dorsi-trapezius muscles to the pelvis.

The graphic below shows the Achilles Tendon junction with the PA at the heel bone.

pa-ac

The graphic below shows the 3 major muscles of the leg associated with the SR stance.

3-muscles

The Soleus (left image in the above graphic) extends from the back of the heel bone (see previous graphic) to a point just below the knee. It acts in concentric contraction (shortening) to extend or plantarflex the ankle. In EC-SR, the Soleus is under tension in stretch in isometric contraction.

The Soleus is one two muscles that make up the Triceps Surae.

The Gastrocnemius (center image in the above graphic) extends from the back of the heel bone  to a point just above the knee. It acts in concentric contraction (shortening) to flex the knee. In EC-SR, it is under tension in isometric contraction to oppose extension of the knee.

The Hamstrings (right image in the black rectangle in the above graphic) extends from a point just below the knee to the pelvic girdle. It acts in concentric contraction (shortening) to flex the knee. In EC-SR, it is under tension in isometric contraction to oppose extension of the knee.

A number of smaller muscles associated with the SR that will be discussed in future posts.

The graphic below depicts the 3 steps to learning an SR Stance.

er-steps

  1. The first step is to set up a static preload on the shank (shin) of the leg by tensioning the soleus muscle to the point where it goes into isometric contraction and arrests ankle dorsiflexion.

The static preload occurs when the tension in the soleus muscle of the leg simultaneously peaks with the tension in the sheet-like ligament called the plantar aponeurosis (PA). The PA supports the vault of the arch of the foot. The soleus is an extension of the PA. This was discussed in my post ZEPPA-DELTA ANGLE AND THE STRETCH REFLEX.

  • While barefoot, stand erect on a hard, flat, level surface as shown in the left hand figure in the graphics above and below. The weight should be felt more under the heels than under the forefoot.
  • Relax the major muscles in the back of the legs (mainly the hamstrings) and allow the hips to drop and the knees to move forward as shown in the right hand figure in the graphics above (1.) and below.
  • As the knees move forward and the hips drop towards the floor the ankle joint will dorsiflex and the angle the shank forms with the floor and the angle of the knee, will both increase until a point is reached where the shank stops moving forward on its own. Movement of the shank will probably be arrested at a point where a plumb line extending downward from the knee cap ends up slightly ahead of the foot. This is the static preload shank angle. It is the point where the soleus and quadriceps muscles go into isometric contraction.

static-preload

2. From the static preload shank angle, while keeping the spine straight, bend forward slightly at the waist. The angles of the shank (ankles) and knees will decrease as the pelvis moves up and back and the CoM moves forward towards the balls of the feet. This will cause the muscles of the thigh to shift from the Quadriceps to the Hamstrings. Bending at the waist tilts the pelvis forward. As the pelvis tilts forward, it tensions the Hamstrings and Gastrocnemius causing the knee and ankle to extend to a point where extension is arrested by the muscles going into isometric contraction. Tension in the Hamstrings and Gastrocnemius extends the lever arm acting to compress the vault of the arches of the feet from the top of the shank to the pelvis thus increasing the pressure on the balls of the feet through Achilles-PA load transfer.

3. From the position in 2., round the back and shoulders as you bend forward from the waist.

Shldrs-back

Make sure the core is activated and tightened as you round the back and shoulders. Pull the shoulders forward and towards each other as the back is rounded so as to form a bow with the shoulder girdle. Looking down from above, the arms should look like they are hugging a large barrel.

Repeat steps 1 through 3. Pay close attention to the changes in the sensations in your body as you work through each step. If you bounce up and down lightly in the position in Step 3., the angles of the joints in your stance should return to the static preload position between bounces.

With the ski boot and Zeppa-Delta ramp angles configured to enable an SR stance, your ski boots will work for you and with you instead of the other way around.

In my next post, I will go into greater detail on how rounding the shoulders and holding the arms in the correct position optimally activates the muscles associated with the SR stance.