Mikaela Shiffrin

THE 2018 SOELDEN GS: A LITMUS TEST OF DYNAMIC STABILITY

Challenging  course conditions, especially in GS, are the litmus test of dynamic stability. The 2018 World Cup GS at Soelden had challenging conditions in spades.

The ability to rapidly achieve dynamic stability across the inside edge of the outside ski is key to moving the Center of Force forward to the point where the biokinetic chain of the outside leg attains sufficient tension to enable the stretch reflex. The stretch reflex (SR) can then modulate pertubations due to asperities in snow surface and terrain with ankle strategies. The principle muscle in ankle balance synergies is the soleus. Dynamic stability enables a racer to float between turns, accelerate under gravity then land on line and load the outside ski. A racer with good dynamic stability is on and off the edges in milliseconds and back into the float phase. Like a skilled gymnast elite skiers and racers can choose their line and stick their landing. Tessa Worely excelled at this in the 2018 Soelden GS.

Tell Tale Signs of Dynamic Stability

Key indicators of dynamic stability are a quiet upper body and the speed at which a racer achieves their line and crosses over into the new turn with their upper body. It’s like watching a flat rock thrown low skipping off water; fly-skip-fly-skip.

In my post, WHY YOUNG TALENTED SKI RACERS FAIL AND EVENTUALLY QUIT RACING (1.), I discuss the 3 levels of balance:

  1. The first reaction is the myotatic stretch reflex, which appears in response to changes in the position of the ankle joints, and is recorded in the triceps surae muscles. This is the earliest mechanism, which increases the activity of the muscles surrounding a joint that is subject to destabilization. Spinal  reflex triggered by the myotatic stretch reflex response causes the muscle to contract resulting in the stiffening of the surrounding joints as a response to the stimulus that has disturbed the balance. For example, changes in the angle of the joints of the lower limbs are followed by a reflexive (fascial) tensioning of adjacent muscles. The subsequent release of the reaction prevents excessive mobility of the joints and stabilises the posture once again.
  2. The next reflex in the process of balancing is the balance-correcting response, which is evoked in response to a strongly destabilising stimulus. This reactive response has a multi-muscle range, and occurs almost simultaneously in the muscles of the lower limbs, torso and neck, while the mechanisms that initiate the reaction are centrally coordinated.
  3. The last of the three types of muscular reaction is the balance-stabilising response. In a situation of a sudden loss of balance, a myotatic stretch reflex first occurs and is then is followed by a balance correcting response, which prevents or attempts to prevent a fall.

I call these balance responses Green (postural reaction 1), Orange (postural reaction 2) and Red (postural reaction 3).

If a racer is no able to use the myotatic reflex (Green = Normal) balance response, the CNS shifts to Level 2 (Orange = Caution) or even Level 3 (Red = DANGER).

Level 1 balance is characterized by a stable, well-controlled upper body (aka quiet upper body) with well controlled and directed positions of the arms.

When the myotatic (stretch) reflex is compromised by restriction of the ankle flexion range required to tension the soleus the balance system will shift to level 2 or level 3 depending on the degree of interference. As the degree of interference with required range of ankle flexion increases the degree of reflexive balance will progress from small, rapid, reactive arm movements to gross reactive arm movements that eventually include gross movements of the torso.

The authors of the Polish skier balance study cited in my post state that ski boots exclude the ankle joint complex from the process of maintaining the stability of the body. However, I don’t believe this is the case with all skiers and especially all racers as evidenced by Soelden video of Tessa Worley, Federica Brignone and Michaela Shiffrin. In my next post I will discuss what I look for in analyzing that suggests dynamic stability and especially a lack of dynamic stability and the indications of compromise and the potential cause.

In the meantime, here’s something to think about.

Early in my boot modification career I came to the conclusion that some skiers, especially racers, were born with the right shape of feet and legs (2.) and this explained why they could ski in ski boots right out of the box with minimal or no modifications better than the majority of skiers even after extensive boot modifications. In a recent series of posts I discussed the results of the 2012 skate study that I modified hockey skates for; the NS (New Skates – Blue bars in the graphics below). The modifications I made were based on ski boot modifications that had resulted in dramatic improvement in performance and race results. Although I optimistically predicted improvements in performance metrics of at least 10% (110%) based on my experience with World Cup skiers, I knew that there was the possibility of a wild card competitive skater who was already close to their maximum performance in their OS (Own Skates – Red bars in the graphics below). If this were the case the skater would realize minimal improvement from the New Skates.

My previous posts only included the results for four competitive skaters. There were actually five competitive skaters in the study. Skater number 1 was the wild card. Look what happened to the results when the wild card skater was added.Look carefully at the graph of the Impulse Force below. Compare Skater number one’s Impulse Force results with the Peak Force results in the preceding graph.This raises the question: Do Tessa Worely, Federica Brignone, Mikaela Shiffrin and other top World Cup racers have the right shape of feet and legs or do they have the right modifications made to their ski boots.


  1. (https://skimoves.me/2017/02/15/why-young-talented-ski-racers-fail-and-eventually-quit-racing/)
  2. THE IDEAL SKIER’S FOOT AND LEG – https://wp.me/p3vZhu-qf

 

 

 

THE HIRSCHER/SHIFFRIN HAIRPIN TURN EXPLAINED

The topics of interest in recent views of my blog combined with comments on online forums on ski technique where nebulous terms such as pressure and tipping are an integral part of the narrative, have highlighted the need for a uniform frame of reference as a basis for meaningful discussions of ski technique as well as for the analysis and accurate identification of factors that explain the superior technique of racers like Marcel Hirscher and Mikaela Shiffrin. Simply trying to emulate the moves of the great skiers without re-creating the equipment factors that enable superior performance is not a productive exercise.

I touched on some of the factors that enable Marcel Hirscher and Mikaela Shiffrin to dominate their competition in my posts WHY SHIFFRIN AND HIRSCHER ARE DOMINATING (1.) and WHY HIRSCHER AND SHIFFRIN CAN CROSS THE LINE (2.). Over the coming weeks, I will post on the factors that I believe explain the ability of Hirscher and Shiffrin to make rapid, abbreviated hairpin turns even on the steep pitches of a course using what I call the problem-solving matrix jigsaw puzzle format. In contrast to the linear step-by-step progression problem-solving format, the matrix jigsaw puzzle format lays out information relevant to a situation in a grid format much like a jigsaw puzzle.  Known factors are assembled where there is a fit with the interfaces and arranged in relation to other components until a solution begins to emerge much like a coherent picture begins to emerge in a jigsaw puzzle as the pieces are correctly assembled. As the picture becomes more clear, tentative connections between the known segments are hypothesized to try and extrapolate the big picture. As the process progresses, less certain or flawed information is discarded and replaced with more certain information

A lot of critical information on the neurobiomechanics and even the mechanics and physics of skiing is either missing, misapplied or misunderstood in the narrative of ski equipment and technique.

Biomechanics of Sports Shoes

A valuable reference on neurobiomechanics and the future of sports shoes is the technical text, Biomechanics of Sports Shoes by Benno M. Nigg. Used in conjunction with the chapter on the Ski Boot in the medical text, The Shoe in Sport, valuable insights can be gleaned on the mechanics, neurobiomechanics and physics of skiing.

Nigg’s book can be ordered at NiggShoeBook@kin.ucalgary.ca. The following chapters in particular contain information relevant to skiing:

3. Functional Biomechanics of the Lower Extremities (pp 79 to 123) – contains essential information on the human ankle joint complex, tibial rotation movement coupling and foot torsion.

4. Sensory System of the Lower Extremities (pp 243 to 253) – contains essential information on the sensory system responsible for balance and precise movement, both of which are key to effective skiing.

In order to advance skiing as a science, a mutual objective must be getting the right answer as opposed to a need to be right.

The wisdom of Albert Einstein is appropriate.

A man should look for what is, and not for what he thinks should be.

To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science.

We cannot solve our problems with the same thinking we used when we created them.

If you can’t explain it simply, you don’t understand it well enough.

In my next post, I will start laying out the functional principles that I currently believe explain the factors that enable the superior performance of racers like Marcel Hirscher and Mikaela Shiffrin and their ability to rapidly redirect their line and maximally accelerate by making rapid, abbreviated, hairpin turns.


  1. https://wp.me/p3vZhu-2q3
  2. https://wp.me/p3vZhu-2qo

WHY HIRSCHER AND SHIFFRIN CAN CROSS THE LINE

There has been a huge surge in interest in my post HIRSCHER AND SHIFFRIN WIN BY CROSSING THE LINE.

The reason Hirscher and Shiffrin can ski this way is that they have the ability to cross the rise line and establish balance on their outside foot and leg in milliseconds. This enables them to make what amounts to a hairpin turn. They are on and off their edges like a flat stone skipping off the water. The reason they can do what few other racers can is because their boot setup supports the requisite neurobiomechanics. I discuss this in my last post WHY HIRSCHER AND SHIFFRIN ARE DOMINATING.

WHY SHIFFRIN AND HIRSCHER ARE DOMINATING

Existing footwear does not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg.

MacPhail, US Patent 5,265,350 – November 30, 1993

Of all the figures who have influenced the development of the plastic shell ski boot over the years, the Australian, Sven Coomer, stands tall as one of the most significant and innovative. More recently, Coomer was involved with the development of Atomic’s race boot, the Redster, used by Marcel Hirscher and Mikaela Shiffrin. Coomer claims that the Redster allows the skier’s forefoot to flex and move naturally within the confines of the shell.

A 2014 article by Jackson Hogen quoted Coomer as saying:

This liberation of the previously stunted, frozen and crushed forefoot is what allows for the subtle edging and foot steering that initiates the slalom turns of World Cup champions Marcel Hirscher and Mikaela Shiffrin. (1.)

Four years, later Hirscher and Shiffrin are dominating the technical disciplines of the World Cup circuit.

The ability to establish balance on the outside foot and ski in milliseconds is dependent on the ability of the forefoot to fully spread and acquire fascial tensioning that extends to the ankle and knee. This is called time-to-stabilization. Although Coomer doesn’t mention them, a myriad of other factors are also critical; including the alignment of the big toe on the long axis of the foot and the optimal ramp angle.

Coomer suspects that if racers would only fit their boots more accurately, coupled with a dynamic molding inner boot medium between the foot and shell, and without down-sizing into short, narrow, thick-sidewall shells, their results just might improve. (1.)

In order to realize their maximum potential it is critical that racers and even recreational skiers have a ski boot fit with dynamic and predictable qualities that substantially match those of the foot and lower leg. Yet Coomer readily acknowledges:

Many racers believe they need downsized, super-stiff, ultra-narrow boots. The most accomplished alpine ski boot designer of the plastic era, Sven Coomer, believes that’s changing.(1.)

But then, he seems to retract his optimism when he says that after forty-five years as the Cassandra of the ski boot world, he knows all too well that just because you can prove you’re right, it doesn’t mean your advice will be heeded.

My observation is that since Hogen’s 2014 article, the situation with downsized, hyper-restrictive ski boots that severely compromise the dynamic nature of the architecture of the foot, has gotten worse. I have seen instances where after having ski boots properly fit, it took several full seasons for the competence of the balance to be fully restored after a skier or racer’s feet and legs were constrained for years in ski boots that were too small and too tightly fit.

Marcel Hirscher and Mikaela Shiffrin have heeded Coomer’s advice. Others choose to ignore him at their own peril. In so doing, they handicap their efforts and limit their race results.

In my next post I will start a series of posts on how to build a ski boot from the snow up; one that provides a fit with dynamic and predictable qualities that substantially match those of the foot and lower leg.


  1. The Master Boot Laster by Jackson Hogen: The International Skiing History Association – Article Date: Tuesday, June 3, 2014

IS SHIFFRIN ON THE LEVEL?

By on the level, I am suggesting that Shiffrin may have a much lower zeppa-delta ramp angle than her competition.

Here are some screen shots from the March 18, 2018 Are Slalom where Shiffrin won by  1.58 seconds. She is on and off her edges in milliseconds as she just seems to pop from turn to turn – Total Domination From Shiffrin (1.)

Compare the angles of Shiffrin’s ankle, knee and hip in the photo below to those of her competition in the second and third photos below.

Notice how extended Shiffrin’s lower body is as she exits the rise line and enters the bottom of the turn in the photo below from a training session earlier in the year.

Extended in the Are Slalom.

Out of the start her knees and ankles are almost straight!

In my next post I will explain what I think is happening and why.


  1. https://youtu.be/gQu-LkyfsRQ?list=PLo6mlcgIm9mzWPBpeXnH2CpFOXrWhBiEB

HIRSCHER AND SHIFFRIN WIN BY CROSSING THE LINE

When a World Cup racer wins a GS by a commanding margin, it’s a sure sign they’ve crossed the line and the gravity of the situation is significant. But I’m not talking about  breaking any rules. Instead, I’m referring to Hirscher and Shiffrin mobilizing the force of gravity by jumping across the rise line above the gate and/or minimizing pressure while rotating their skis across the rise line towards the gate so the edges of their outside ski progressively engage and lock up as they extend and incline closing the kinetic chain. Knee extension, in combination with ankle extension, uses the momentum of COM in conjunction with the force of gravity to progressively engage and apply force to the outside ski.

Reilly McGlashan has an excellent YouTube analysis of Marcel Hirscher using this technique in the 2017 Alta Badia GS (1.) The technique Hirscher and now Mikaela Shiffrin are using relates directly to the second rocker/internal rotation, impulse loading mechanism I described in a series of posts. The text below is excerpted from a comment I posted on McGlashan’s YouTube video analysis of Hirscher.

Hirscher progressively engages his edges, especially on his outside ski then hooks a tight arc close to the gate to establish his line. Once he has established his line, he no longer needs his outside ski. He gets off it in milliseconds and uses the rebound energy to project forward with only enough pressure on his uphill (new outside) ski to influence his trajectory of inertia so his COM enters the rise line at a low angle of intersection. He gets rebound energy from the loading  of his outside ski and from what amounts to a plyometric release of muscle tension from the biokinetic chain of muscles extending from the balls of his outside foot to his pelvis. The energy is created by the vertical drop from above the gate to below the gate similar to jumping off a box, landing and then making a plyometric rebound. Hirscher is skiing the optimal way and it shows on the clock and leader board.

Replicating the mechanism in a static environment is not possible because there is no inertia. But a device I have designed and constructed enables the mechanism to be rehearsed with the same feeling as in skiing.

The key is loading the forebody of the outside ski with a shovel down position as the leg is rotating the ski into the turn. This sets up the second rocker impulse loading mechanism that tips the ski onto its inside edge. Extending the knee and ankle uses momentum to exert a force on the snow with the ski.

The photo below shows the training mechanism head on. The white horizontal arms represent the sidecut of the ski. The platform under the foot can be adjusted transversely to change the sensitivity. Vertical plates set beside the ball of the foot and on the outer corner and behind the heel transfer turntable rotation torque to the ski created by rotating the leg internally with the glutes. The platform will only tilt under impulse loading if the second rocker can engage. Few skiers can use this mechanism because their ski boots do not accommodate second rocker biomechanics.

The link below is to a video that shows the effect of extending the knee and ankle while moving the hips forward and over the support foot (monopedal function). The stack height and minimum profile width of are FIS 93 mm/63 mm. Rotation in itself will not cause the device to tip onto its inside edge if centre of pressure is on the anatomic centre of the foot (through the centre of the heel and ball of the second toe).

Dr. Emily Splichal’s recent webinar on the Science of Sensory Sequencing and Afferent Stimulation (2.) is relevant to motor control and cognitive development associated with high performance skiing. Pay careful attention to Dr. Splichal’s discussion of the role of mechanoceptors and the fact there are none on the inner (medial) aspect of the arches of the feet which is why footbeds or anything that impinges on the inner arch is a bad thing. I will discuss the implications of Dr. Splichal’s webinar in a future post.

In my next post, I will provide detailed information on the training device.


  1. https://youtu.be/OxqEp7LS_24
  2. https://www.youtube.com/watch?v=2qPnrQ85uec&feature=youtu.be

 

 

THE SHOCKING TRUTH ABOUT POWER STRAPS REVISITED

Since I started this blog with my first post, A CINDERELLA STORY: THE ‘MYTH’ OF THE PERFECT FIT (1.) on 2013-05-11, THE SHOCKING TRUTH ABOUT POWER STRAPS (2.) is by far the most widely viewed post. This is significant because the content of this post challenges premises that are widely embraced and cited as knowledge that is fundamental to skiing.

The greatest enemy of knowledge is not ignorance; it is the illusion of knowledge.

                                                                                    – attributed to Stephen Hawking

Widely accepted false beliefs can negate incentives to pursue the acquisition of knowledge necessary to understand complex issues that fall outside the limits of established paradigms. A prime example being the ability to balance perfectly on the outside ski.

Observing great skiers like Marc Giardelli or Ingemar and more recently, Mikaela Shiffrin, Lindsey Vonn and Marcel Hirscher balance perfectly on their outside ski suggests it is possible. But uninformed observation in itself does not impart, let alone lead to, an understanding of the associated mechanics, biomechanics and physics of perfect balance on the outside ski as it equates with neuromuscular mediated dynamic balance of triplanar torques acting across the joints of the ankle/foot complex, knee and hip. The intrinsic need of those who regarded as authorities on ski technique to provide plausible explanations for the actions of elite skiers led to the fabrication of terms such as knee angulation that served to create an illusion of knowledge of the mechanism of balance on the outside ski. Knee angulation also provided an effective mechanism with which to demonstrate the mechanics of edge hold.

To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science.

                                                                                                                          – Albert Einstein

While knee angulation provides a plausible explanation for a mechanism with which to rotate a ski onto it’s edge, it does not explain the mechanism of perfect balance on the outside ski in accordance with Newton’s Laws and the principles of functional anatomy. Solving this mystery required raising new possibilities and creating a new paradigm; one that looked at the function of the human lower limbs from a new perspective with new possibilities.

It took me from 1980 to 1990 to discover how the mechanism of balance on the outside ski works. Trying to impart an understanding of this mechanism to others has presented significant challenges because the illusion of knowledge within the ranks of the ski industry has resulted in a hardened mental model that makes the real mechanism all but invisible. The resulting information bias causes people to seek information that supports what they believe while filtering out information that conflicts with what they believe; i.e.

I don’t need new information on how to balance perfectly on my outside ski because I have been doing this for years and I don’t need to know anything more.

But the reality is, that with rare exception, while elite skiers and even World Cup racers may think they can balance on their outside ski they have no way of recognizing the correct feeling, let alone confirming that they are actually doing what they think they are doing.

I have designed and fabricated a device with which to train skiers/racers to create a platform under their outside ski on which to stand and balance perfectly on. The device can be used to capture what I call a skier’s personal Balance Signature using technologies like CARV. More on this in my next post.


  1. https://wp.me/p3vZhu-p
  2. https://wp.me/p3vZhu-UB