human feet

A FIVE STEP SKIER PERFORMANCE PROGRAM

Almost 40 years ago to the day, the head of the Whistler Pro Patrol, whose boots I had worked on, introduced me to Nancy Greene in the Roundhouse restaurant on top of Whistler Mountain. The rest is, as they say, history. Nancy asked me if I would work on her ski boots. She was so impressed by the results of my work that she approached the National Ski Team to make arrangements for me to work with some of Canada’s best racers.

Recently, while going through some archived files, I found copies of Nancy’s communication with the Program Director of the National Ski Team, Andrzej Kozbial. When Nancy approached me about working with our National Team, I stressed to her that I did not see any potential arrangement with the team as a job opportunity but instead as a vehicle where I could gain further experience and knowledge while providing a crucial service to the team and furthering the sport of skiing.

The graphic below is an excerpt copied from Nancy’s first letter of April 26, 1978 to the National Ski Team Program Director.

At the time that I wrote my US Patent 5,265,350 in early 1992, the intent and purpose of the detailed and lengthy specification was to provide a repository of the knowledge I had acquired to date to serve as a legacy for skiers and skiing to help advance the sport. While this information was in support of the inventions disclosed in the patent, the majority of the information was not subject to protection under the terms of the patent. The information was open access to the world. This was my intent.

In spring of 2000, I formed a company with 2 partners for the 2000-2001 ski season called Synergy Sports Performance Consultants Ltd. The objective of the venture was to gain further experience and knowledge and create a model that could be used as a template for future skier performance programs.

The following series of graphics are from Power Point presentations synergy made to ski schools.

The following graphic is the poster that described the synergy 5 Step Performance Program.

5 Step Performance Program description

The synergy Analysis Program looks at how your body interfaces with your ski equipment; primarily your footbeds and boots because this is the connection to your equipment and through it to the snow.

Synergy offers the program as a package made up of 5 components. They can either be taken as the complete package [recommended], several components or steps at once, or one component at time. Synergy recommends that you begin at step 1 and follow the sequence in numerical order. But the order can be arranged however you wish to suit your needs. The choice is yours.

1.Biomechanical Assessment

Good foot function is the key to control. That’s why the first thing we thing we assess is your biomechanical function. What that means is that we look at how well your foot and lower limb works. The examination is done by a podiatrist who looks at how your foot functions and how the lower limbs all connect.  Then we see how effectively your feet interface with the ground by putting you on insoles that read the pressures under your feet. We coach you through some balance movements while we watch how your foot functions while our computer records the results

2. Footbed Assessment

Footbeds can have a positive, neutral or negative effect on the function of your feet.

That’s why the next thing we check is how your foot interfaces with your footbed or orthotic.  We make sure that it allows your foot to function as well as it should without one.  And if your foot needs some assistance for optimal function we make sure the footbed is helping your foot do what it needs to do.

3. Ski Boot Assessment

Now that your foot is functioning optimally we make sure your ski boot lets it keep functioning. We conduct a thorough examination of your boot and provide you with a report that tells you how your boot is affecting your performance. Most important, we tell you what has to be done to fix the problem.

4. Kinesthetic Training

Skiing is about making the right moves. Kinesthetic Training is next. It teaches you how to tell when your body is making those moves. What is Kinesthetic Training? In simple terms it means to train your body to associate a feeling or sense with the right movements made at the right time. It is feeling and bringing about an awareness so you know when you are doing it right because we have taken you there and you have felt it. A picture may be worth a thousand words, but in skiing a feeling is worth a thousand pictures. We bring you to understand what you should feel in your foot at the start of the turn and then what it feels like to settle and balance onto the foot that drives the ski. By acquiring this sense you become more aware of how to allow your foot to transfer energy directly to the edge of the ski by using the body the way it was designed to be used. Remember, your body was not made to be a lever.

5. On-Hill Data Collection

This is where everything comes together. We move to the ski hill for this part of the package. We meet up top on Whistler or Blackcomb Mountain. We put our pressure insoles in your ski boots.  A pair of cables from the insoles goes up your ski pants where it connects to the data box [a kind of mini computer] we attached to your waistband.  Then we go out for a run on moderate, groomed terrain.  We record data in three takes in medium radius turns at a speed you are most comfortable with. While this is happening we videotape your skiing. Then we head into the lodge and synchronize the video with your foot pressure data. When this is done we watch your foot function in your boots on the computer screen on one side while we study your ski video on the other side of the screen. This way we confirm that your foot is functioning optimally as confirmed by analyzing your movement patterns and the timing of your skills.

My next post will be on the synergy Boot Assessment program.

 

BEYOND BIOMECHANICS BY DR. EMILY SPLICHAL

The following post appeared on the Evidence Based Fitness Academy (EBFA) fitness blog on February 6, 2018 under the title Beyond Biomechanics | Addressing Foot Pain with Sensory Stimulation (1.).

I have reproduced the post with the kind permission of Dr. Emily Splichal under the title Beyond Biomechanics by Dr. Emily Splichal because her emphasis on the role of sensory stimulation of the plantar foot on foot, lower limb and function of the entire body has both direct application to and implications for, skiing.

I have a theory on what I call The NABOSO Effect that explains how I think NABOSO insoles improve dynamic stability in the biokinetic chain that I will discuss in a future post. I have been testing NABOSO 1.0 and 1.5 for months.


Beyond Biomechanics | Addressing Foot Pain with Sensory Stimulation – by Dr. Emily Splichal

I want you to picture a human foot.   Now picture a person standing barefoot, and then walking barefoot.   Do you see the foot striking the ground and flexing under impact, only to re-stabilize and push off just a few milliseconds later?

Often times when we think of human movement we can’t help but to be drawn to the thought of joints moving and muscles contracting.   Or in the case of foot function we are quick to consider the mechanics of flat feet, high arches, pronation and supination.   However when we delve deeper into the science of human movement there is more than meets the eye.

The Two Sides of Foot Function

When I teach on behalf of EBFA Global or speak to my patients I always emphasize that there are two sides to foot function (and dysfunction) – biomechanical and neuromuscular.    Now both play an important role in foot function which means that both must be appreciated – however to solely treat foot pain with just one belief system in mind is inherently flawed.

In most Podiatric Medical Schools we are taught foot function and foot pathology solely from a biomechanical perspective.

This means that every patient is tested for foot mobility and told to stand statically to determine arch height and foot type.   Based on this foot-focused biomechanical assessment and foot classification system the patient’s cause of injury and treatment protocol is determined.   Some of the favorite treatment recommendations include motion-controlled footwear and custom-posted orthotic both of which are prescribed with the hopes of controlling foot-focused biomechanics and thereby reducing their foot pain.

Beyond Biomechanics

The other side of foot function is one that is driven from a neuromuscular perspective and integrates the science of sensory stimulation and fascial systems.   In the case of neuromuscular function every patient would be assessed for sensitivity of plantar mechanoceptors as well as co-activation patterns between the foot and the core.  The role of minimal footwear, myofascial releasing, breathing patterns and compensation patterns more proximal would all be considered.

So which is more appropriate?  Well it depends.   In certain cases there will be a stronger argument towards a more biomechanical influence and in others it is more sensory.  This means it really is a marriage between the two approaches that provides the greatest patient outcome.

Sensory Stimulation in Foot Pain

My practice and Podiatry career is built around bringing an awareness to the important role sensory stimulation has on foot function and foot pain.

With every step we take impact forces are entering the foot as vibration.  This vibrational noise stimulates unique mechanoceptors on the bottom of the foot and is used to coordinate the loading of impact forces through coordinated contractions of the intrinsic (small) muscles of the bottom of the foot.   This co-contraction leads to a stiffening or strengthening response of the foot.

Researchers such as Nigg et al. and Robbins et al. have demonstrated a direct relationship between sensory stimulation of the plantar foot and intrinsic muscle strength concluding that one is necessary for the other.   This means that if our footwear or orthotics disconnect us from sensory stimulation – as in the case of cushioned footwear – this can actually weaken our foot making us susceptible to plantar fasciitis, Achilles tendinitis and stress fractures.

Beyond Vibration Stimulation

Vibration stimulation is an extremely important sensory stimulation that enters our foot however it isn’t the only stimulation.   Another important stimulation is the ability for our foot to determine texture and if a surface is rough or smooth.   This information is used to help maintain dynamic balance (think walking on ice).

Enter the merkel disk mechanoceptors.   These superficial sensory nerves are used to determine what’s called 2 point discrimination which is translated to roughness or the texture of a surface.  Surface texture and insole texture is one of the most studied aspects of foot stimulation and posture or gait.  From decreased medial lateral sway in patients with Parkinson’s or MS to reduced prefrontal cortical activity in atheltes post-concusion the applications are promising!

One area that hasn’t been focused on for sensory stimulation and foot function is foot pain.  I am here to change the awareness around this concept and share the powerful application of sensory stimulation and foot pain.

As we mentioned earlier sensory stimulation of the foot leads to a contraction of the intrinsic muscles of the foot.   Intrinsic muscle contraction is not only a criticial step in the damping of impact forces but has also been shown to increase the medial arch and build co-activation contractions in the core.

 The Evolution of Textured Insoles

In October 2017 Naboso Technology launched the first-ever commercially available textured insole!   Naboso Technology essentially brought the science of touch and years of textured insole research to the market place giving new hope to people with foot pain.

Available in two strengths – Naboso 1.0 (1mm texture) and Naboso 1.5 (1.5mm texture) Naboso Insoles are designed to be worn without socks (or at the most very thin socks).  They fit into all footwear, are freely movable in all planes of motion and are only 3mm thick.

FROM THE GROUND UP

Are you barefoot strong?


Learn more about the power of texture! – http://www.nabosostechnology.com

  1. https://barefootstrongblog.com/2018/02/06/beyond-biomechanics-addressing-foot-pain-with-sensory-stimulation/

 

NABOSO SURFACE SCIENCE INSOLE UPDATE

In June of this year, I posted on my beta testing experience with NABOSO surface science, small nerve, proprioception stimulating technology (1.).

Recently, I received the consumer version of NABOSO called NABOSO 1.0 shown in the photo below.

NABOSO 1.0 has a tighter grid than the NABOSO beta version I have been testing. The pyramid-like texture is also smaller.

The photo below shows NABOSO 1.o on the left and NABOSO beta on the right. The photo was taken before I trimmed NABOSO 1.0 to fit my shoes. 
Here is the information that came with my pair NABOSO 1.0 insoles.

I use both NABOSO 1.0 and NABOSO beta in my Lems Primal 2 and Xero Prio shoes. I immediately sensed better balance with the tighter grid of NABOSO 1.0. But I found it interesting after going back to NABOSO beta, after a period of time in NABOSO 1.o, that NABOSO beta felt more stimulating. Based on this subjective experience, I think there may be some advantage to switching back and forth between different texture grids. Hence my interest in the new NABOSO 1.5.

NABOSO 1.5 can be pre-ordered now for a reduced price of $30 US at orders@nabosotechnology.com

Disclosure: I do not receive any form of compensation from NABOSO or Dr. Emily Splichal. Nor do I hold any shares or have any financial interest in the company. The sole benefit I derive from NABOSO is to my feet and my balance and the efficiency of my movement.

I will be testing NABOSO insoles in my ski boots this winter in conjunction with toe spreaders starting with NABOSO 1.0. I will report on my experience in a future post.


  1. http://wp.me/p3vZhu-27v

SHOE/LINER HACKS

There is no point in continuing my discussion of the mechanics of balance on the outside ski because the odds are great that ski boots are preventing most skiers from engaging the mechanics required to apply the torsional forces to a ski with which to establish a balance platform under the outside foot.

In the scheme of things, an essential first step is to adapt the ski boots to functional needs of the skier as opposed to forcing the skier to adapt to the limitations imposed on them by the ski boots. Tightly fitting, supportive ski boots and most conventional constricting, cushioned, supportive footwear actually makes the feet weaker while compromising postural alignment and balance. There is an emerging global movement that is recognizing conventional footwear as THE problem behind compromised foot function while creating a ‘perceived need’ for cushioned soles  and artificial support in the form of custom insoles and orthotics which, instead of solving functional issues in the feet, lower limbs and entire body, further weaken the biokinetic chain.

The links below are to 3 articles that speak to this subject.

ORTHOTICS OR NOT => OUR LIMITING FOOT BELIEFS ARE HURTING US – http://kristinmarvinfitness.com/orthotics-or-not-our-limiting-foot-beliefs-are-hurting-us/

YOU WERE BORN WITH PERFECT FEET – https://www.correcttoes.com/foot-help/feet-101/

STRENGTHENING VS. SUPPORTING: THE COMPETING LOGIC OF FOOT HEALTH – https://www.correcttoes.com/foot-help/strengthening-vs-supporting-competing-logic-foot-health/

There is currently a whole series of Foot-Cast Episodes on The Foot Collective site at – http://www.thefootcollective.com

see – THE HUMAN GUIDEBOOK FOR SWITCHING TO BAREFOOT FOOTWEAR


A good starting point is to acquire a sense of how day-to-day footwear compromises foot and lower limb function and the modifications or ‘hacks’  necessary to adapt the footwear to the functional needs of the user.

A recent post on the Correct Toes blog called ‘How to Modify Your Shoes to Better Fit Your Feet’ (1.), comments on a runner who was experiencing distracting numbness and tingling in her feet, but balked at allowing her coach to make a few cuts in the upper material of her shoes to relieve the tension that was causing her problem. Most people are uneasy with the idea of modifying footwear. They tend to readily accept standard, off the shelf shoe size fit and assume that the way a shoe fits (or doesn’t) fit their foot is the way it is supposed to fit.

I recently had a similar experience with a young ski racer whose toes were crunched up in her ski boots that were both too short and too narrow. The liners were especially bad. Like many of today’s young racers, early in her racing career, she had probably grown accustomed to the constraint imposed on her feet by her ski boots and had unconsciously learned to make her feet comfortable by standing with most of her weight on her heels. After a time, her body had come to accept this as ‘normal’. Once this happened, she became reluctant to make changes.

A ex-racer, who I worked with back in the 1970s, loaned the young racer a pair of her boots. The improvement in the racer’s skiing was immediate and remarkable. Her coach commented that she had made 6 months improvement in one day! Unfortunately, stories of skiers and racers whose foot function, balance and even the function of their entire body has been compromised by tightly fitting, supportive ski boots is common. But happy outcomes, such as this young racer experienced, are exceedingly rare.

The Correct Toes post offers some good suggestions on footwear modifications that are remarkably similar to those I have used for decades in both ski boot liners and in my own footwear. The reason the modifications are similar is that the end objective; creating a functional environment for the user by minimizing the negative impact of the footwear on foot function, is the same.

The series of photos that follow illustrate examples of modifications that can improve the functional fit of footwear. An easy modification is to reconfigure the lacing pattern. Just because a shoe has a specific set of lace eyelets does not mean they all are necessary. The 2 photos below are from the Correct Toes article.

Photo with permission of Correct Toes

The photos below are the lace hacks I made on my Xero Prio (left) and Lems Primal 2 (R).

One modification that the Correct Toes article does not mention is the use of lace locks. Lace locks allow lace tension to be regulated and maintained without the need to over tighten laces to prevent them from coming undone.

This is one form of lace locks on my Xero Prio.

This is another form of lace locks on my Lems Primal 2.

I also use Correct Toes to improve foot function.

Correct Toes, The Foot Collective, EBFA, Feet Freex, EM Sports and many others are advancing on a uniform front in lock-step with the makers of minimal shoes in recognizing the damage caused to feet by conventional footwear while moving towards a uniform standard for the design and construction of footwear that creates a functional environment for the foot, while minimizing the negative impacts associated with structures placed on the human foot. Technologies such as NABOSO hold the promise of advancing on barefoot function in what I like to call ‘Beyond Barefoot’.

It has long been my experience that liners are the most problematic aspect of most ski boots. When I worked exclusively with Langes, I often made extensive modifications to liners that included using a liner a size larger than the shell size and re-sectioning and/or re-sewing the forefoot to allow proper alignment of the big toe and adequate width for the forefoot to fully splay.

The biggest problem in ski boot liners is in the toe box, especially the shape of the toe end in that it forces the big toe inwards, towards the center of the foot.

A modification that the Correct Toes article suggests is to make small slits on the side of the footwear opposite the point where the foot needs more room to splay.

Photo with permission of Correct Toes

Cutting small slits along the base of a ski boot liner is the first hack I usually try. But in many cases, I find more drastic modifactions are necessary in order to obtain the width required for the foot to fully splay and the big toe to align properly.

The photos below are before (L) and after (R) modifications that were necessary to accommodate my wife’s feet. These are older race stock Lange liners which I fit to her extensively modified Head boot shells.

The photo below is of the modified liner from my Head World Cup boot.

For ‘shallow’ feet or feet with a low instep the Correct Toes article suggests adding tongue depressors along the top of the foot or under the laces to help fill the void and prevent the foot from lifting or sliding around.Photo with permission of Correct Toes

The photo is of forefoot/instep retention pad that applies a constraining load to the foot that is substantially perpendicular to the transverse plane of the boot board. This device is similar to the one that powered Steve Podborksi to the podium in World Cup Downhill races. Today, Steve remains the only non-European to have ever won the World Cup Downhill title.

I devoted a large portion of my US Patent 5,265,350 to laying the groundwork for a functional standard that could evolve and eventually be applied to all forms of footwear, but especially ski boots. There are encouraging signs that the ski industry has finally started to take baby steps in this direction. I will discuss this in my next post.


  1. https://www.correcttoes.com/foot-help/modify-shoes-better-fit-feet/ 

NABOSO PROPRIOCEPTIVE STIMULATION INSOLES

For several weeks, I have been testing the first-ever small nerve plantar proprioceptive stimulation insole technology called NABOSO, which means “barefoot” in Czech. The surface science technology was invented by Dr. Emily Splichal and is being marketed by her in conjunction with NABOSO yoga mats and floor tiles.

Introducing Naboso Insoles by Naboso Barefoot Technology. Get ready to experience what it truly means to move from the ground up with the first-ever small nerve proprioceptive insole to hit the footwear industry.

The skin on the bottom of the foot contains thousands of (small nerve) proprioceptors, which are sensitive to different stimuli including texture, vibration, skin stretch, deep pressure and light touch. When stimulated these proprioceptors play an important role in how we maintain upright stance, activate our postural muscles and dynamically control impact forces. – Dr. Emily Splichal

http://nabosotechnology.com/about

Dr. Emily Splichal goes on to state:

The skin on the bottom of the foot plays a critical role in balance, posture, motor control and human locomotion. All footwear – including minimal footwear – to some degree blocks the necessary stimulation of these plantar proprioceptors. The result is a delay in the nervous system which can contribute to joint pain, compensations, loss of balance and inefficient movement patterns.

Naboso Insoles are backed by surface science and texture research – and have been shown to not only improve balance but also positively impact gait patterns, ankle proprioception and force production in athletes.

Dr. Splichal stresses that:

This (NABOSO insole) is an insole providing proprioceptive and neuromuscular stimulation – it is not an orthotic providing biomechanical control.

http://nabosotechnology.com/naboso-insoles/

The principle proprioceptive neural activity associated with balance responses occurs across the plantar plane. It is strongest in the 1st MPJ (big toe joint) and big toe.

Dr. Splichal cites studies that found that textured insoles increased the activity of receptors in the plantar surface of the feet with a significant, immediate effect seen in the outcome measures of static (weight bearing) and dynamic (weight symmetry index, strength symmetry) in balance tests  as well as in gait symmetry (single support and swing phases). Thus, the proprioceptive stimulation benefit of textured insoles is carried over into footwear without textured insoles. I have noticed a significant improvement in  plantar proprioceptive sensitivity when barefoot or when my feet are not bearing weight. It is as if my feet have been put to sleep by a local anesthetic which has worn off.

Dr. Splichal’s information on NABOSO states that for the first time ever it is now possible to bring the power of barefoot science and plantar proprioceptive stimulation to all footwear – regardless of support, cushion or heel toe drop.

Assuming a NABOSO is trimmed, if necessary, to fit a shoe, there will be a positive effect on plantar proprioceptive stimulation. But my experience to date has been that the plantar proprioceptive stimulation will be much more pronounced in a minimal, zero drop shoe with adequate width for fascial forefoot tensioning and correct alignment of the big toe. I have experienced the best results with NABOSO in the Xero Prio shoe with the Lems Primal 2 and a Vivobarefoot model, close seconds.

The photo below shows the Xero Prio (blue-grey) with the Lems Primal 2 (black).

Both shoes have thin soles with low resiliency (the material compresses very little). The soles are also very flexible, an important quality. The sole wearing qualities of the Xero are excellent. The Xero Prio has become my all around minimal shoe. I use it for cycling on my mountain bike fit with large flat platform pedals.

The photo below is of the NABOSO insole for my left shoe.

Initially, NABOSO insoles are perceived, but not uncomfortable. After a time, shoes feel strange without them.

Over several weeks, I have done many tests of different shoes and insoles where I compare cushioned, standard insoles to NABOSO and different shoes with and without NABOSO as well as one-on-one comparisons with different shoes on each foot. After an initial walk in period, if I remove a NABOSO insole from one of my Xero Prios, it feels as if sole of the foot with the Xero without the NABOSO is signicantly less sensitive.

The most significant aspect of trying NABOSO insoles in different shoes is that it immediately becomes apparent just how bad some shoes are. The more cushioning, the narrower the fit and the greater the heel to toe elevation of the sole, the worse the shoe feels. For example, when I compared the Xero Prio with zero drop to a Nike Free with a 5 mm drop, I immediately sensed a pronounced negative effect on my posture and muscles of my legs, especially my glutes.

A Game Changer?

Prior to NABOSO, footwear companies could make shoes that have a negative affect on posture, balance and gait because it could be argued that the benefits of protecting the soles of the feet from mechanical damage outweigh any negative effects on balance and increased susceptibility to falls and injury. But the criteria for product liability is that a product must minimize, but not necessarily eliminate, the risk of injury to the consumer. Studies of textured insoles and even thin, low resilency soled footwear have shown dramatic improvements in balance and gait while reducing the risk of falls and potential injury. The inescapable conclusion is that footwear that reduces balance and the efficiency of gait while increasing the risk of falls and potential injury fails to meet this standard. This raises the question, “Will product liability litigation in footwear be the “next shoe to drop?””

NABOSO in  Ski Boots?

I have not yet had an opportunity to test NABOSO ski boots. But 2 racers I am working with are using NABOSO in zero drop minimal shoes. Stay tuned.

 

THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: WINDLASS POWER

Two factors can prevent a skier from being able to develop a platform under the body of the outside ski on which to stand and balance on during a turn using the same processes used to balance on one foot on solid ground:

  1. The biomechanics of the foot and leg have been compromised by traditional footwear and,
  2. The structures of the ski boot, especially insoles, footbeds, orthotics and form fit liners, are interfering with the foot to pelvic core tensioning of the biokinetic chain that starts in the forefoot.

The torsional stiffening of the ankle and knee joints resulting from fascial tensioning of the biokinetic chain is fundamental to the ability to create a platform under the body of the outside ski by internally rotating the outside leg from the pelvis. It may sound complicated. But it is actually quite simple. Once learned, it can become as intuitive as walking.

The best method I have found to appreciate how ski boots, custom insoles and form fitting liners can affect the function of the feet and even the entire body, is do a series of exercises starting with the short foot. The short foot helps to assess the ability to harness the Windlass Power associated with the big toe. Once proper function has been acquired in the foot and leg, a skier can go through a methodical, step-by-step process to assess the effect of each component of the ski boot on the function of the feet and legs.

The latest edition of Runner’s World (1.) reports on a study done by a team at Brigham Young University that compared the size and strength of the foot’s “instrinsic” muscles in 21 female runners and 13 female gymnasts. Gymnasts train and compete in bare feet.

The researchers found:

Of the four muscles measured with ultrasound, the gymnasts were significantly bigger on average in two of them, with no difference in the other two. The gymnasts were stronger in their ability to flex their big toe, with no difference in the strength of the second, third, and fourth toes.

Although balance is important in all sports, it is especially critical in gymnastics. So it is significant that study found that the big toes of the gymnasts were stronger than the big toes of the runners.

Until recently, I found it much easier to balance on my left leg than my right leg. The big toe on my left foot was noticeably larger than the big toe on my right foot and the big toe on my left foot was aligned straight ahead whereas the big toe on my right foot was angled outward towards my small toes. This misalignment had pushed the ball of my foot towards the inside of my foot causing a bunion to form on the side, a condition known as hallux valgus. I now understand why I could balance better on my left foot than my right foot.

The muscle that presses the big toe down is called the Flexor Hallucis Longis (FHL). It is inserted into the last joint of the big toe where it exerts a pull that is linear with the big toe and ball of the foot. When the arch is maximally compressed in late stance, the Flexor Hallucis Longis is stretched and tensioned causing the big toe to press down. It’s insertion on the upper third of the fibula causes the lower leg to rotate externally (to the outside). When stretched, the FHL acts in combination with the Posterior Tibialis to support the arch. Footwear that prevents the correct alignment of the hallux weakens the arch making it more difficult to balance on one foot; the foot pronates unnaturally.

Going mostly barefoot for the past 10 years and wearing minimal type shoes for the past 6 years, made my feet stronger.  But it had minimal effect in correcting the hallux valgus in my right foot. It was only after doing the exercises in the links that follow, such as the short foot, that the big toe on my right foot became properly aligned and grew in size. It is now the same size as my left toe and I am able to balance equally well on both feet. The problem with ski boots and most footwear, is that they can force the big toe into a hallux valgus position while preventing the forefoot from splaying and spreading naturally weakening the arch and significantly impairing natural balance.

In the early 1970’s, when the then new plastic ski boots were making a presence in skiing, research on human locomotion was in its infancy. Studies of the effects of sports shoes on human performance were virtually nonexistent. The only technology available back then with which to study the biomechanics of athletes was high speed (film) movies. Ski boot design and modification was a process of trial and error. Many of the positions that predominate even today were formed back then.

As methodologies began to develop that enabled the study of the effect of sports shoes on users, biomechanists and medical specialists became convinced that excessive impact forces and excessive pronation were the most important issues affecting performance and causing or contributing to injury. I suspect that biomechanists and medical specialists arrived at this conclusion even though there was little evidence to support it because it seemed logical. Soon, the term, excessive pronation became a household word. The perceived solution? Arch supports, cushioned soles, motion control shoes and a global market for arch supports.  This appears to have precipitated an assumption within the ski industry that the feet of all skiers needed to be supported in ski boots and pronation, greatly restricted, or even prevented altogether. Even though no studies were ever done that I am aware of that demonstrated that pronation was a problem in skiing, support and immobilization became the defacto standard. Custom footbeds, orthotics and form fitted liners became a lucrative market.

As the support and immobilize paradigm was becoming entrenched in skiing, studies were increasingly concluding that, with rare exceptions, excessive pronation, is a non-existent condition with no pathologies associated with it and that the role of impact forces was mis-read. Today, it is increasingly being recognized that interference to natural foot splay and joint alignment of the big toe by the structures of footwear, causes weakness in the foot and lower limbs through interference with the natural processes of sequential fascial tensioning that occurs in the late stance phase. But the makers of footwear and interventions such as arch supports, have been slow to recognize and embrace these findings.

A key indicator of whether a skier has successfully developed a platform under the outside ski with which stand and balance on, is the position and alignment of the knee in relation to the foot and pelvis as the skier enters the fall line from the top of a turn. I discuss this in my post, MIKAELA SHIFFRIN AND THE SIDECUT FACTOR.

Best Surfaces for Training

A good starting point for the short foot and other exercises is Dr.Emily Splichal’s YouTube video, Best Surfaces for Training https://youtu.be/gvJjIi3h1Bs

Although it may seem logical to conclude that soft, cushioned surfaces are best for the feet, the reality is very different. The best surfaces to balance on are hard, textured surfaces. Dr. Splichal has recently introduced the world’s first surface science insoles and yoga mats using a technology she developed called NABOSO which means without shoes in Czech.

The skin on the bottom of the foot plays a critical role in balance, posture, motor control and human locomotion. All footwear – including minimal footwear – to some degree blocks the necessary stimulation of these plantar proprioceptors resulting in a delay in the response of the nervous system which can contribute to joint pain, compensations, loss of balance and inefficient movement patterns. I’ve been testing NABOSO insoles for about a month. I will discuss NABOSO insoles in a future post. In the meantime, you can read about NABOSO at https://naboso-technology.myshopify.com/products/naboso-insoles

Short Foot Activation

 

Short Foot Single Leg Progressions


  1. Here’s the Latest Research on Running Form – May 30, 2017
  2. Biomechanics of Sports Shoes – Benno M. Nigg

INTRODUCING THE FOOT COLLECTIVE

The Skier’s Manifesto places a high priority on foot function and exercises that make feet strong and healthy. (THE IMPORTANCE OF STRONG HEALTHY FEET IN SKIING).  There is a rapidly emerging camp of medical professionals and trainers aligned with this cause who offer excellent articles on this subject. One such group is TheFoot Collective – http://www.thefootcollective.com.

TheFoot Collective has kindly given me permission to repost material from their blog on the Skier’s Manifesto. The graphic below is from the home page of TheFoot Collective.

What is the Foot Collective?

The Foot Collective is a group of Canadian physical therapists giving people back control over the health of their feet through education. Most modern day humans have poorly functioning feet and our mission is to spread the truth about footwear and give people the information needed to independently restore their own feet.

The collective exists to spread awareness of the importance of foot health and to provide quality advice on restoring proper foot function.

Foot problems have reached epidemic levels and the solution is simple: Quality foot health education to help people fix their own feet.

There’s a big problem with modern footwear

The modern shoe is harming the human foot. Footwear companies are creating products to make money, not in the interest of foot health and its slowly killing our feet. We’re here to spread the truth about footwear.

Most footwear today has an elevated heel, narrow forefoot and a slab of foot numbing cushioning between your foot and the ground below you.

Your feet are magically designed body parts with the primary purpose of sending your brainsignals about the ground below you. When they get compressed and are prevented from sensing the ground because of cushioning, they lose their ability to function and create nasty upstream effects for our bodies.


The kind of shoes you wear daily, especially the type of shoe you train in, affects how your body functions in skiing. Cushioning and cushioned insoles are especially bad. This is a recent post on the TheFoot Collective.

THE DANGER OF HEELED FOOTWEAR
👣👣
wearing a shoe with an elevated heel might seem harmless but it has real effects on your posture upstream. These postural changes change how your body moves by making certain muscles more dominant (quads especially) and others weak (glutes)
👣👣
Over time, heeled footwear is a big culprit for knee problems and tight ankles so avoid them whenever you can. Finding a zero drop flat shoe can be quite difficult but taking the time to find one makes a massive difference in your joint health and movement patterns
👣👣
Most modern day running shoes and dress shoes have this nasty heel lift so beware of the consequences and transition to zero drop barefoot footwear. Your body will thank you
👣👣


I have been testing different brands of minimal shoes; zero drop, thin flexiable, low resilency soles, for the past few months and will posting on this issue soon. For reasons I will explain in future posts, it appears as if a small amount of positive toe down ramp (aka drop) – approximately 2.5 degrees, is important to a strong stance in skiing. But my regular footwear is all minimal, zero drop.