human feet

NABOSO SURFACE SCIENCE INSOLE UPDATE

In June of this year, I posted on my beta testing experience with NABOSO surface science, small nerve, proprioception stimulating technology (1.).

Recently, I received the consumer version of NABOSO called NABOSO 1.0 shown in the photo below.

NABOSO 1.0 has a tighter grid than the NABOSO beta version I have been testing. The pyramid-like texture is also smaller.

The photo below shows NABOSO 1.o on the left and NABOSO beta on the right. The photo was taken before I trimmed NABOSO 1.0 to fit my shoes. 
Here is the information that came with my pair NABOSO 1.0 insoles.

I use both NABOSO 1.0 and NABOSO beta in my Lems Primal 2 and Xero Prio shoes. I immediately sensed better balance with the tighter grid of NABOSO 1.0. But I found it interesting after going back to NABOSO beta, after a period of time in NABOSO 1.o, that NABOSO beta felt more stimulating. Based on this subjective experience, I think there may be some advantage to switching back and forth between different texture grids. Hence my interest in the new NABOSO 1.5.

NABOSO 1.5 can be pre-ordered now for a reduced price of $30 US at orders@nabosotechnology.com

Disclosure: I do not receive any form of compensation from NABOSO or Dr. Emily Splichal. Nor do I hold any shares or have any financial interest in the company. The sole benefit I derive from NABOSO is to my feet and my balance and the efficiency of my movement.

I will be testing NABOSO insoles in my ski boots this winter in conjunction with toe spreaders starting with NABOSO 1.0. I will report on my experience in a future post.


  1. http://wp.me/p3vZhu-27v

SHOE/LINER HACKS

There is no point in continuing my discussion of the mechanics of balance on the outside ski because the odds are great that ski boots are preventing most skiers from engaging the mechanics required to apply the torsional forces to a ski with which to establish a balance platform under the outside foot.

In the scheme of things, an essential first step is to adapt the ski boots to functional needs of the skier as opposed to forcing the skier to adapt to the limitations imposed on them by the ski boots. Tightly fitting, supportive ski boots and most conventional constricting, cushioned, supportive footwear actually makes the feet weaker while compromising postural alignment and balance. There is an emerging global movement that is recognizing conventional footwear as THE problem behind compromised foot function while creating a ‘perceived need’ for cushioned soles  and artificial support in the form of custom insoles and orthotics which, instead of solving functional issues in the feet, lower limbs and entire body, further weaken the biokinetic chain.

The links below are to 3 articles that speak to this subject.

ORTHOTICS OR NOT => OUR LIMITING FOOT BELIEFS ARE HURTING US – http://kristinmarvinfitness.com/orthotics-or-not-our-limiting-foot-beliefs-are-hurting-us/

YOU WERE BORN WITH PERFECT FEET – https://www.correcttoes.com/foot-help/feet-101/

STRENGTHENING VS. SUPPORTING: THE COMPETING LOGIC OF FOOT HEALTH – https://www.correcttoes.com/foot-help/strengthening-vs-supporting-competing-logic-foot-health/

There is currently a whole series of Foot-Cast Episodes on The Foot Collective site at – http://www.thefootcollective.com

see – THE HUMAN GUIDEBOOK FOR SWITCHING TO BAREFOOT FOOTWEAR


A good starting point is to acquire a sense of how day-to-day footwear compromises foot and lower limb function and the modifications or ‘hacks’  necessary to adapt the footwear to the functional needs of the user.

A recent post on the Correct Toes blog called ‘How to Modify Your Shoes to Better Fit Your Feet’ (1.), comments on a runner who was experiencing distracting numbness and tingling in her feet, but balked at allowing her coach to make a few cuts in the upper material of her shoes to relieve the tension that was causing her problem. Most people are uneasy with the idea of modifying footwear. They tend to readily accept standard, off the shelf shoe size fit and assume that the way a shoe fits (or doesn’t) fit their foot is the way it is supposed to fit.

I recently had a similar experience with a young ski racer whose toes were crunched up in her ski boots that were both too short and too narrow. The liners were especially bad. Like many of today’s young racers, early in her racing career, she had probably grown accustomed to the constraint imposed on her feet by her ski boots and had unconsciously learned to make her feet comfortable by standing with most of her weight on her heels. After a time, her body had come to accept this as ‘normal’. Once this happened, she became reluctant to make changes.

A ex-racer, who I worked with back in the 1970s, loaned the young racer a pair of her boots. The improvement in the racer’s skiing was immediate and remarkable. Her coach commented that she had made 6 months improvement in one day! Unfortunately, stories of skiers and racers whose foot function, balance and even the function of their entire body has been compromised by tightly fitting, supportive ski boots is common. But happy outcomes, such as this young racer experienced, are exceedingly rare.

The Correct Toes post offers some good suggestions on footwear modifications that are remarkably similar to those I have used for decades in both ski boot liners and in my own footwear. The reason the modifications are similar is that the end objective; creating a functional environment for the user by minimizing the negative impact of the footwear on foot function, is the same.

The series of photos that follow illustrate examples of modifications that can improve the functional fit of footwear. An easy modification is to reconfigure the lacing pattern. Just because a shoe has a specific set of lace eyelets does not mean they all are necessary. The 2 photos below are from the Correct Toes article.

Photo with permission of Correct Toes

The photos below are the lace hacks I made on my Xero Prio (left) and Lems Primal 2 (R).

One modification that the Correct Toes article does not mention is the use of lace locks. Lace locks allow lace tension to be regulated and maintained without the need to over tighten laces to prevent them from coming undone.

This is one form of lace locks on my Xero Prio.

This is another form of lace locks on my Lems Primal 2.

I also use Correct Toes to improve foot function.

Correct Toes, The Foot Collective, EBFA, Feet Freex, EM Sports and many others are advancing on a uniform front in lock-step with the makers of minimal shoes in recognizing the damage caused to feet by conventional footwear while moving towards a uniform standard for the design and construction of footwear that creates a functional environment for the foot, while minimizing the negative impacts associated with structures placed on the human foot. Technologies such as NABOSO hold the promise of advancing on barefoot function in what I like to call ‘Beyond Barefoot’.

It has long been my experience that liners are the most problematic aspect of most ski boots. When I worked exclusively with Langes, I often made extensive modifications to liners that included using a liner a size larger than the shell size and re-sectioning and/or re-sewing the forefoot to allow proper alignment of the big toe and adequate width for the forefoot to fully splay.

The biggest problem in ski boot liners is in the toe box, especially the shape of the toe end in that it forces the big toe inwards, towards the center of the foot.

A modification that the Correct Toes article suggests is to make small slits on the side of the footwear opposite the point where the foot needs more room to splay.

Photo with permission of Correct Toes

Cutting small slits along the base of a ski boot liner is the first hack I usually try. But in many cases, I find more drastic modifactions are necessary in order to obtain the width required for the foot to fully splay and the big toe to align properly.

The photos below are before (L) and after (R) modifications that were necessary to accommodate my wife’s feet. These are older race stock Lange liners which I fit to her extensively modified Head boot shells.

The photo below is of the modified liner from my Head World Cup boot.

For ‘shallow’ feet or feet with a low instep the Correct Toes article suggests adding tongue depressors along the top of the foot or under the laces to help fill the void and prevent the foot from lifting or sliding around.Photo with permission of Correct Toes

The photo is of forefoot/instep retention pad that applies a constraining load to the foot that is substantially perpendicular to the transverse plane of the boot board. This device is similar to the one that powered Steve Podborksi to the podium in World Cup Downhill races. Today, Steve remains the only non-European to have ever won the World Cup Downhill title.

I devoted a large portion of my US Patent 5,265,350 to laying the groundwork for a functional standard that could evolve and eventually be applied to all forms of footwear, but especially ski boots. There are encouraging signs that the ski industry has finally started to take baby steps in this direction. I will discuss this in my next post.


  1. https://www.correcttoes.com/foot-help/modify-shoes-better-fit-feet/ 

NABOSO PROPRIOCEPTIVE STIMULATION INSOLES

For several weeks, I have been testing the first-ever small nerve plantar proprioceptive stimulation insole technology called NABOSO, which means “barefoot” in Czech. The surface science technology was invented by Dr. Emily Splichal and is being marketed by her in conjunction with NABOSO yoga mats and floor tiles.

Introducing Naboso Insoles by Naboso Barefoot Technology. Get ready to experience what it truly means to move from the ground up with the first-ever small nerve proprioceptive insole to hit the footwear industry.

The skin on the bottom of the foot contains thousands of (small nerve) proprioceptors, which are sensitive to different stimuli including texture, vibration, skin stretch, deep pressure and light touch. When stimulated these proprioceptors play an important role in how we maintain upright stance, activate our postural muscles and dynamically control impact forces. – Dr. Emily Splichal

http://nabosotechnology.com/about

Dr. Emily Splichal goes on to state:

The skin on the bottom of the foot plays a critical role in balance, posture, motor control and human locomotion. All footwear – including minimal footwear – to some degree blocks the necessary stimulation of these plantar proprioceptors. The result is a delay in the nervous system which can contribute to joint pain, compensations, loss of balance and inefficient movement patterns.

Naboso Insoles are backed by surface science and texture research – and have been shown to not only improve balance but also positively impact gait patterns, ankle proprioception and force production in athletes.

Dr. Splichal stresses that:

This (NABOSO insole) is an insole providing proprioceptive and neuromuscular stimulation – it is not an orthotic providing biomechanical control.

http://nabosotechnology.com/naboso-insoles/

The principle proprioceptive neural activity associated with balance responses occurs across the plantar plane. It is strongest in the 1st MPJ (big toe joint) and big toe.

Dr. Splichal cites studies that found that textured insoles increased the activity of receptors in the plantar surface of the feet with a significant, immediate effect seen in the outcome measures of static (weight bearing) and dynamic (weight symmetry index, strength symmetry) in balance tests  as well as in gait symmetry (single support and swing phases). Thus, the proprioceptive stimulation benefit of textured insoles is carried over into footwear without textured insoles. I have noticed a significant improvement in  plantar proprioceptive sensitivity when barefoot or when my feet are not bearing weight. It is as if my feet have been put to sleep by a local anesthetic which has worn off.

Dr. Splichal’s information on NABOSO states that for the first time ever it is now possible to bring the power of barefoot science and plantar proprioceptive stimulation to all footwear – regardless of support, cushion or heel toe drop.

Assuming a NABOSO is trimmed, if necessary, to fit a shoe, there will be a positive effect on plantar proprioceptive stimulation. But my experience to date has been that the plantar proprioceptive stimulation will be much more pronounced in a minimal, zero drop shoe with adequate width for fascial forefoot tensioning and correct alignment of the big toe. I have experienced the best results with NABOSO in the Xero Prio shoe with the Lems Primal 2 and a Vivobarefoot model, close seconds.

The photo below shows the Xero Prio (blue-grey) with the Lems Primal 2 (black).

Both shoes have thin soles with low resiliency (the material compresses very little). The soles are also very flexible, an important quality. The sole wearing qualities of the Xero are excellent. The Xero Prio has become my all around minimal shoe. I use it for cycling on my mountain bike fit with large flat platform pedals.

The photo below is of the NABOSO insole for my left shoe.

Initially, NABOSO insoles are perceived, but not uncomfortable. After a time, shoes feel strange without them.

Over several weeks, I have done many tests of different shoes and insoles where I compare cushioned, standard insoles to NABOSO and different shoes with and without NABOSO as well as one-on-one comparisons with different shoes on each foot. After an initial walk in period, if I remove a NABOSO insole from one of my Xero Prios, it feels as if sole of the foot with the Xero without the NABOSO is signicantly less sensitive.

The most significant aspect of trying NABOSO insoles in different shoes is that it immediately becomes apparent just how bad some shoes are. The more cushioning, the narrower the fit and the greater the heel to toe elevation of the sole, the worse the shoe feels. For example, when I compared the Xero Prio with zero drop to a Nike Free with a 5 mm drop, I immediately sensed a pronounced negative effect on my posture and muscles of my legs, especially my glutes.

A Game Changer?

Prior to NABOSO, footwear companies could make shoes that have a negative affect on posture, balance and gait because it could be argued that the benefits of protecting the soles of the feet from mechanical damage outweigh any negative effects on balance and increased susceptibility to falls and injury. But the criteria for product liability is that a product must minimize, but not necessarily eliminate, the risk of injury to the consumer. Studies of textured insoles and even thin, low resilency soled footwear have shown dramatic improvements in balance and gait while reducing the risk of falls and potential injury. The inescapable conclusion is that footwear that reduces balance and the efficiency of gait while increasing the risk of falls and potential injury fails to meet this standard. This raises the question, “Will product liability litigation in footwear be the “next shoe to drop?””

NABOSO in  Ski Boots?

I have not yet had an opportunity to test NABOSO ski boots. But 2 racers I am working with are using NABOSO in zero drop minimal shoes. Stay tuned.

 

THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: WINDLASS POWER

Two factors can prevent a skier from being able to develop a platform under the body of the outside ski on which to stand and balance on during a turn using the same processes used to balance on one foot on solid ground:

  1. The biomechanics of the foot and leg have been compromised by traditional footwear and,
  2. The structures of the ski boot, especially insoles, footbeds, orthotics and form fit liners, are interfering with the foot to pelvic core tensioning of the biokinetic chain that starts in the forefoot.

The torsional stiffening of the ankle and knee joints resulting from fascial tensioning of the biokinetic chain is fundamental to the ability to create a platform under the body of the outside ski by internally rotating the outside leg from the pelvis. It may sound complicated. But it is actually quite simple. Once learned, it can become as intuitive as walking.

The best method I have found to appreciate how ski boots, custom insoles and form fitting liners can affect the function of the feet and even the entire body, is do a series of exercises starting with the short foot. The short foot helps to assess the ability to harness the Windlass Power associated with the big toe. Once proper function has been acquired in the foot and leg, a skier can go through a methodical, step-by-step process to assess the effect of each component of the ski boot on the function of the feet and legs.

The latest edition of Runner’s World (1.) reports on a study done by a team at Brigham Young University that compared the size and strength of the foot’s “instrinsic” muscles in 21 female runners and 13 female gymnasts. Gymnasts train and compete in bare feet.

The researchers found:

Of the four muscles measured with ultrasound, the gymnasts were significantly bigger on average in two of them, with no difference in the other two. The gymnasts were stronger in their ability to flex their big toe, with no difference in the strength of the second, third, and fourth toes.

Although balance is important in all sports, it is especially critical in gymnastics. So it is significant that study found that the big toes of the gymnasts were stronger than the big toes of the runners.

Until recently, I found it much easier to balance on my left leg than my right leg. The big toe on my left foot was noticeably larger than the big toe on my right foot and the big toe on my left foot was aligned straight ahead whereas the big toe on my right foot was angled outward towards my small toes. This misalignment had pushed the ball of my foot towards the inside of my foot causing a bunion to form on the side, a condition known as hallux valgus. I now understand why I could balance better on my left foot than my right foot.

The muscle that presses the big toe down is called the Flexor Hallucis Longis (FHL). It is inserted into the last joint of the big toe where it exerts a pull that is linear with the big toe and ball of the foot. When the arch is maximally compressed in late stance, the Flexor Hallucis Longis is stretched and tensioned causing the big toe to press down. It’s insertion on the upper third of the fibula causes the lower leg to rotate externally (to the outside). When stretched, the FHL acts in combination with the Posterior Tibialis to support the arch. Footwear that prevents the correct alignment of the hallux weakens the arch making it more difficult to balance on one foot; the foot pronates unnaturally.

Going mostly barefoot for the past 10 years and wearing minimal type shoes for the past 6 years, made my feet stronger.  But it had minimal effect in correcting the hallux valgus in my right foot. It was only after doing the exercises in the links that follow, such as the short foot, that the big toe on my right foot became properly aligned and grew in size. It is now the same size as my left toe and I am able to balance equally well on both feet. The problem with ski boots and most footwear, is that they can force the big toe into a hallux valgus position while preventing the forefoot from splaying and spreading naturally weakening the arch and significantly impairing natural balance.

In the early 1970’s, when the then new plastic ski boots were making a presence in skiing, research on human locomotion was in its infancy. Studies of the effects of sports shoes on human performance were virtually nonexistent. The only technology available back then with which to study the biomechanics of athletes was high speed (film) movies. Ski boot design and modification was a process of trial and error. Many of the positions that predominate even today were formed back then.

As methodologies began to develop that enabled the study of the effect of sports shoes on users, biomechanists and medical specialists became convinced that excessive impact forces and excessive pronation were the most important issues affecting performance and causing or contributing to injury. I suspect that biomechanists and medical specialists arrived at this conclusion even though there was little evidence to support it because it seemed logical. Soon, the term, excessive pronation became a household word. The perceived solution? Arch supports, cushioned soles, motion control shoes and a global market for arch supports.  This appears to have precipitated an assumption within the ski industry that the feet of all skiers needed to be supported in ski boots and pronation, greatly restricted, or even prevented altogether. Even though no studies were ever done that I am aware of that demonstrated that pronation was a problem in skiing, support and immobilization became the defacto standard. Custom footbeds, orthotics and form fitted liners became a lucrative market.

As the support and immobilize paradigm was becoming entrenched in skiing, studies were increasingly concluding that, with rare exceptions, excessive pronation, is a non-existent condition with no pathologies associated with it and that the role of impact forces was mis-read. Today, it is increasingly being recognized that interference to natural foot splay and joint alignment of the big toe by the structures of footwear, causes weakness in the foot and lower limbs through interference with the natural processes of sequential fascial tensioning that occurs in the late stance phase. But the makers of footwear and interventions such as arch supports, have been slow to recognize and embrace these findings.

A key indicator of whether a skier has successfully developed a platform under the outside ski with which stand and balance on, is the position and alignment of the knee in relation to the foot and pelvis as the skier enters the fall line from the top of a turn. I discuss this in my post, MIKAELA SHIFFRIN AND THE SIDECUT FACTOR.

Best Surfaces for Training

A good starting point for the short foot and other exercises is Dr.Emily Splichal’s YouTube video, Best Surfaces for Training https://youtu.be/gvJjIi3h1Bs

Although it may seem logical to conclude that soft, cushioned surfaces are best for the feet, the reality is very different. The best surfaces to balance on are hard, textured surfaces. Dr. Splichal has recently introduced the world’s first surface science insoles and yoga mats using a technology she developed called NABOSO which means without shoes in Czech.

The skin on the bottom of the foot plays a critical role in balance, posture, motor control and human locomotion. All footwear – including minimal footwear – to some degree blocks the necessary stimulation of these plantar proprioceptors resulting in a delay in the response of the nervous system which can contribute to joint pain, compensations, loss of balance and inefficient movement patterns. I’ve been testing NABOSO insoles for about a month. I will discuss NABOSO insoles in a future post. In the meantime, you can read about NABOSO at https://naboso-technology.myshopify.com/products/naboso-insoles

Short Foot Activation

 

Short Foot Single Leg Progressions


  1. Here’s the Latest Research on Running Form – May 30, 2017
  2. Biomechanics of Sports Shoes – Benno M. Nigg

INTRODUCING THE FOOT COLLECTIVE

The Skier’s Manifesto places a high priority on foot function and exercises that make feet strong and healthy. (THE IMPORTANCE OF STRONG HEALTHY FEET IN SKIING).  There is a rapidly emerging camp of medical professionals and trainers aligned with this cause who offer excellent articles on this subject. One such group is TheFoot Collective – http://www.thefootcollective.com.

TheFoot Collective has kindly given me permission to repost material from their blog on the Skier’s Manifesto. The graphic below is from the home page of TheFoot Collective.

What is the Foot Collective?

The Foot Collective is a group of Canadian physical therapists giving people back control over the health of their feet through education. Most modern day humans have poorly functioning feet and our mission is to spread the truth about footwear and give people the information needed to independently restore their own feet.

The collective exists to spread awareness of the importance of foot health and to provide quality advice on restoring proper foot function.

Foot problems have reached epidemic levels and the solution is simple: Quality foot health education to help people fix their own feet.

There’s a big problem with modern footwear

The modern shoe is harming the human foot. Footwear companies are creating products to make money, not in the interest of foot health and its slowly killing our feet. We’re here to spread the truth about footwear.

Most footwear today has an elevated heel, narrow forefoot and a slab of foot numbing cushioning between your foot and the ground below you.

Your feet are magically designed body parts with the primary purpose of sending your brainsignals about the ground below you. When they get compressed and are prevented from sensing the ground because of cushioning, they lose their ability to function and create nasty upstream effects for our bodies.


The kind of shoes you wear daily, especially the type of shoe you train in, affects how your body functions in skiing. Cushioning and cushioned insoles are especially bad. This is a recent post on the TheFoot Collective.

THE DANGER OF HEELED FOOTWEAR
👣👣
wearing a shoe with an elevated heel might seem harmless but it has real effects on your posture upstream. These postural changes change how your body moves by making certain muscles more dominant (quads especially) and others weak (glutes)
👣👣
Over time, heeled footwear is a big culprit for knee problems and tight ankles so avoid them whenever you can. Finding a zero drop flat shoe can be quite difficult but taking the time to find one makes a massive difference in your joint health and movement patterns
👣👣
Most modern day running shoes and dress shoes have this nasty heel lift so beware of the consequences and transition to zero drop barefoot footwear. Your body will thank you
👣👣


I have been testing different brands of minimal shoes; zero drop, thin flexiable, low resilency soles, for the past few months and will posting on this issue soon. For reasons I will explain in future posts, it appears as if a small amount of positive toe down ramp (aka drop) – approximately 2.5 degrees, is important to a strong stance in skiing. But my regular footwear is all minimal, zero drop.

STANCE HACK: TUNE UP YOUR FEET

Biohacking Your Body with Barefoot Science

“…… hacking” or finding a way to more efficiently manipulate human biology.  This can include areas of sleep, nutrition, mental health, strength, recovery. (1)
– Dr. Emily Splichal – Evidence Based Fitness Academy

 

Last ski season, I developed some simple cues or hacks to help skiers and racers quickly find the body position and joint angles required to create the pressure under the outside foot with which to impulse load the outside ski and establish a platform on which to stand and balance on through the turn phase –  THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: IMPULSE LOADING

The primary source of information that helped me develop these cues are the exercises developed by Dr. Emily Splichal. Her exercises also helped me to appreciate the extent to which traditional supportive footwear with raised heels and cushioned soles has damaged my feet and deadened the small nerves responsible for maintaining upright balance and the ability to initiate precise movement. Since implementing Dr. Splichal’s evidence based science, I am not only skiing at a level beyond what I considered possible, I am starting to walk naturally for the first time in my life.

The information contained in Dr. Splichal’s videos will challenge everything you know or thought you knew about what we have been conditioned to believe about our feet and the footwear we encase them in. Contrary to what we have been told, cushioning under the feet does not reduce impact forces on the lower limbs and protect them. Instead, it actually increases impact forces while slowing what Dr. Splichal refers to as the time to stabilization; the time required to stabilize, stiffen and maximally protect the joints of lower limb from impact damage – THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE

The Best Surfaces to Train On

A good place to start is to learn which surfaces are best to train on. Again, while it may seem logical and intuitive that surfaces with cushioning are best because they will protect the body from shocks, studies show the exact opposite to be true. Over time, support and cushioning in shoes can diminish the sensitivity of the rich small nerve matrix in the feet that acts as a neural mapping system for balance and movement. In her YouTube video, Best Surfaces to Train On (https://youtu.be/gvJjIi3h1Bs), Dr. Splichal discusses the effects of different surfaces on plantar small nerve proprioception and explains how barefoot training is a form of small nerve proprioceptive training designed to activate the plantar foot. Balance training is best done barefoot.

The Power of Plantar Proprioceptors

Watching Dr, Splichal’s webinar presentation Understanding Surface Science: The Power of Plantar Proprioceptors – https://youtu.be/t5AU-noqMFg will further your appreciation of the power of plantar proprioception.

First Stance Hack – Plantar Foot Release for Optimal Foot Function

Dr. Splichal’s 6 Minute Plantar Foot Release for Optimal Foot Function – https://youtu.be/zyrKgFwsppI will dramatically improve foot function.
Dr Splichal explains how to use RAD rollers (golf ball or other firm balls will also work) to optimize foot function by releasing tissues in the plantar foot by applying pressure to the 6 areas shown in the graphic below.
Dr. Splichal advises to focus on using a pin and hold technique  (not rolling the foot on the balls) to apply pressure to these 6 spots on each foot holding for about 20 seconds on each spot with each of the three different sized rounds for a total time of about 6 minutes. The foot release should be done 2 times and day and prior to each training session.
In my next post I will talk about the second Stance Hack: Pressing Down on the Big Toe to Impulse Load the Ski and Power the Turn

1.  https://barefootstrongblog.com/2017/04/28/biohacking-your-body-with-barefoot-training/

REVISIONS TO CORE CONCEPTS

Due to recent interest in CORE CONCEPTS on the HOME page menu (above), I have started to revise it. The current version appears below. Links to a number of pertinent papers and videos by Dr. Emily Splichal (Evidence Based Fitness Academy – EBFA ) have been appended to CORE CONCEPTS.


As bipeds, we propel our bodies forward by moving from one fascially tensioned base of support with foot to core sequencing on one foot to another fascially tensioned base of support with foot to core sequencing.

Skiing uses the same basic pattern. In skiing, we need to establish a fascially tensioned base of support with foot to core sequencing on one foot in order to be able to move with precision to another fascially tensioned base of support with foot to core sequencing on another foot. As far back as the 70’s, the famous French ski technician, Patrick Russell, said that the key to effective skiing is to ‘move from ski to ski’. What Russell was really alluding to is the process of alternating single limb support.

Ever since alpine skiing became formally established, it has been known that the best skiers move from the outside ski of one turn to the outside ski of the next turn. Although this may sound simple enough, the key to being able to effectively move from ski to ski (foot to foot) is the ability to establish a fascially tensioned base of support with foot to core sequencing one foot and then use it to move the body or Centre of Mass to the new outside foot (current uphill ski) of the next turn. Good skiers do this so seamlessly that turns seem to have no beginning or end. The turns just flow together. When viewed in the context of stance and swing phases, the resembles to walking becomes apparent,

How to make skiing as intuitive as walking is what this blog is about. I devoted an entire series of patent to this subject commencing with US Patent No. 5,265,350 and associated international patents on the elements of a minimal ski boot necessary to accommodate the process of establishing a fascially tensioned base of support with foot to core sequencing on one foot and transitioning seamlessly back and forth between bipedal and monopedal stances.

The ability to balance multi-plane torques on the outside leg of a turn is, and continues to be, the secret of the worlds’ best skiers including Toni Sailor, Nancy Greene Raine, Pirmin Zubriggen and, today, Mikaela Shiffrin, Lindsey Vonn and Ted Ligety to name but a few.


A REVIEW OF GAIT CYCLE AND ITS PARAMETERS – Ashutosh Kharb1, Vipin Saini2 , Y.K Jain3, Surender Dhiman4 – https://ijcem.org/papers72011/72011_14.pdf

Dynamic loading of the plantar aponeurosis in walking – Erdemir A1, Hamel AJFauth ARPiazza SJSharkey NA. – https://www.ncbi.nlm.nih.gov/pubmed/14996881

Active regulation of longitudinal arch compression and recoil during walking and running – Luke A. KellyGlen Lichtwark, and Andrew G. Cresswell – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277100/

The Foots Arch and the Energetics of Human Locomotion – Sarah M. Stearne, Kirsty A. McDonald, Jacqueline A. Alderson, Ian North, Charles E. Oxnard & Jonas Rubenson – http://www.nature.com/articles/srep19403

Shoes alter the spring-like function of the human foot during running – Kelly LA1, Lichtwark GA2, Farris DJ2, Cresswell A2. – J R Soc Interface. 2016 Jun;13(119). pii: 20160174. doi: 10.1098/rsif.2016.0174. – https://www.ncbi.nlm.nih.gov/pubmed/27307512


The Science of the Human Lever: Internal Fascial Architecture of the Forefoot with Dr. Emily Splichal – https://www.youtube.com/watch?v=_35cQCoXp9U