ground reaction force

THE MECHANICS + BIOMECHANICS OF PLATFORM ANGLE: PART 10 – SUPPLEMENTAL INFORMATION


Because of the complex issues I am about to start discussing in the next series of posts I am providing supplemental reference information to assist the reader in understanding the issues associated with platform angle mechanics and biomechanics and underlying process of dynamic stability.

Background of events leading up to the outside ski platform ground balance solution

In late 1989, after gaining valuable insights from the medical textbook, The Shoe In Sport, I had formulated a hypothetical model that explained the macro details of the mechanics and biomechanics of platform angle and the mechanism of user CNS postural balance control.

Insights from The Shoe in Sport:

Correct positioning of the foot is more important than forced constraint and “squeezing” the foot.

Forward sliding of the foot should not be possible. 

From a technical (skiing) point of view, the ski boot must represent an interface between the human body and the ski. This implies first of all an exchange of steering function, i.e., the skier must be able to steer as well as possible, but must also have a direct (neural) feedback from the ski and from the ground (snow). 

The comment about the importance of correct positioning of the foot and the ski boot  representing an interface between the human body and the ski gave me insights that led to the discovery of key mechanical of the foot whose position in relation to the inside edge and X-Y axes of the ski affects the transfer and control of steering and platform forces to the ski and control.

When I wrote the application for US Patent No 5,265,350 in late 1991 and early 1992 I described the mechanics and biomechanics of plantar angle in great detail knowing this information would be freely available to the entire world to use once the patent was published. The only exception was the information covered by claims. Known mechanics and biomechanics are not in themselves patentable.

Patents and Research

It is important to note that patents, even when granted, do not apply to the use of a patented device for the purpose of pure research. Knowing this at the time I wrote the patent, I described the Birdcage research vehicle in sufficient detail with many figures to enable the device to be constructed at minimal cost so research could be conducted by others as soon as possible for the purpose of advancing the knowledge base and science of alpine skiing.

The following unedited text is excerpted from the patent.

……. the teaching of this (patent) application is that force must be applied and maintained only to specific areas of the foot and leg of the user while allowing for unrestricted movement of other areas.

The performance of such mediums (skate blades and skis) is largely dependent on the ability of the user to accurately and consistently apply forces to them as required to produce the desired effect.

In addition, in situations where the user must interact with external forces, for example gravity, the footwear must restrain movements of the user’s foot and leg in a manner which maintains the biomechanical references with the medium with which it is interacting.

Precise coupling of the foot to the footwear is possible because the foot, in weight bearing states, but especially in monopedal function, becomes structurally competent to exert forces in the horizontal plane relative relative to the sole of the footwear at the points of a triangle formed by the posterior aspect and oblique posterior angles of the heel, the head of the first metatarsal and the head of the fifth metatarsal. In terms of transferring horizontal torsional and vertical forces relative to the sole of the footwear, these points of the triangle become the principal points of contact with the bearing surfaces of the footwear. 

The most important source of rotational power with which to apply torque to the footwear is the adductor/rotator muscle groups of the hip joint. In order to optimally link this capability to the footwear, there must be a mechanically stable and competent connection originating at the plantar processes of the foot and extending to the hip joint. Further, the balanced position of the skier’s centre of mass, relative to the ski edge, must be maintained during the application of both turning and edging forces applied to the ski. Monopedal function accommodates both these processes. 

Yet a further problem relates to the efficient transfer of torque from the lower leg and foot to the footwear. When the leg is rotated inwardly relative to the foot by muscular effort a torsional load is applied to the foot. Present footwear does not adequately provide support or surfaces on and against which the wearer can transfer biomechanically generated forces such as torque to the footwear. Alternatively, the footwear presents sources of resistance which interfere with the movements necessary to initiate such transfer. It is desirable to provide for appropriate movement and such sources of resistance in order to increase the efficiency of this torque transfer and, in so doing, enhance the turning response of the ski.

In skiing, the mechanics of monopedal function provide a down force acting predominantly through the ball of the foot (which is normally almost centred directly over the ski edge). In concert with transverse torque (pronation) arising from weight bearing on the medial aspect of the foot which torque is stabilized by the obligatory internal rotation of the tibia, the combination of these forces results in control of the edge angle of the ski purely as a result of achieving a position of monopedal stance on the outside foot of the turn. 

The edge angle can be either increased or decreased in monopedal function by increasing or decreasing the pressure made to bear on the medial aspect of the foot through the main contact points at the heel and ball of the foot via the mechanism of pronation. As medial pressure increases, horizontal torque (relative to the ski) increases through an obligatory increase in the intensity of internal rotation of the tibia. Thus, increasing medial pressure on the plantar aspect of the foot tends to render the edge-set more stable.

There are many figures that illustrate the concepts expressed in the above text which I will include in future posts.

The photo below shows the strain gauges (black disks) fit to the 1991 research vehicle. These gauges recorded first metatarsal forces under and to its inner or medial aspect and the outer and rearmost aspects of the heel bone.

I’ve learned a lot since the above information was made public after the patent was issued on November 30, 1993.

In Part 10, I will discuss the mechanism by which forces applied by the ball of the foot to what I call the Control Center of the platform provide quasi ground under the outside foot and leg in the load phase of a turn for a skier to stand and balance on.

WHY TRYING TO COPY HIRSCHER AND SHIFFRIN’S MOVES DOESN’T WORK

There appears to be a widely held perception within the ski industry, even among coaches and trainers at the World Cup level, that skiing like Hirscher and Shiffrin is simply a matter of observing and then copying their movements. There also appears to be a widely held perception that strength training and training on BOSU balls, wobble boards, slack lines and thick foam pads will transfer to improved balance on skis.

In a recent article, Nailing the Coffin Shut on Instability Training Ideas (1.), trainer, Bob Alejo, cites 59 papers on the topic of instability training in support of his position that not only are the assumptions about instability training improving balance in a specific activity incorrect, instability training may actually have a negative effect on performance.

As far back as 1980, I had found that an immediate improvement in skier performance after ski boot modifications was a reliable indicator that the modifications were positive. Sometimes this was evident in the first few turns. I had also found that equipment modifications or equipment changes that had a negative effect did not become obvious right away. I didn’t understand the reason for the immediate and sometimes dramatic improvement in skier performance following ski boot modifications. But I suspected it had something to do with improved skier balance.

By 1990, I had hypothesized that elite skiers are able to create a dynamically stable foundation under their outside ski and foot in a turn to balance on by rotating the edged ski against resistance from the sidecut and that this has the effect of extending ground reaction force from the snow out under the body of the ski. But even after the Birdcage studies of 1991 validated my theory, I still didn’t fully understand the reason for the dramatic improvement in skier performance in the Birdcage tests or following modifications made to conventional ski boots. Strain gauges fit to the Birdcage showed forces and the sequence of loading. But the strain gauges could not measure the magnitude of the forces.

It was Dr Emily Splichal’s (2.) that answered my question when she said;

It doesn’t matter how physically strong you are. Without a foundation of stability, you are weak. With a foundation of stability, you are stronger and faster than anyone.

In his article, Nailing the Coffin Shut on Instability Training Ideas (1.), Alejo supports Dr. Splichal’s position:

The predominant theme of the training data analysis under unstable conditions is the striking reduction in force and, subsequently, power. It would be of no surprise then that the speed of motion, as well as the range of motion, were negatively affected under unstable conditions, as cited in the literature.

Reduced Force Outputs Result in Less Power

Essentially, even though both groups improved in some instances, the stable surfaces group outperformed the unstable group in all categories. So much so that it led the authors to conclude that the results of their study affirmed—what was a criticism then and now is fact—that unstable training does not allow for enough loading to create strength and data.

Simply put, athletes can handle heavier weight under stable conditions versus unstable conditions.

Dynamic Stability is critical for a skier or skater to assume a strong position from which to generate force while maintaining control and initiate precise movement from. A key marker of dynamic stability in ice skating and skiing is the magnitude of impulse force, especially peak force.

Impulse

Impulse is a large force applied for a short duration of time. Peak force is the highest force applied during an impulse force.

If superior dynamic stability is the reason for the dominance of racers like Hirscher and Shiffrin then pressure data obtained during skiing should show higher impulse and peak forces than generated their competition. While the technology to measure these forces is readily available I don’t have access to this data even if it does exist. So I’ll use data generated from hockey skate study I was involved in 2012 that compared data captured from competitive skaters performing in their own skates to skates I had modified using principles from my patents and modifications described in this blog.

The first step was to capture baseline data from the test subjects own ice skates (OS). The bar graph below shows the peak force in Newtons applied by each of the four test subjects. Peak force has a very short duration.

Subjects 1 and 3 applied a peak force of approximately 800 Newtons. A pound is 4.45 Newtons. So 800 Newtons is approximately 180 lbs.

Test subjects #1 and #3 are almost identical. But test subject #1 has a very slim edge over test subject #3.

Test subject #2 is 3rd in ranking while test subject #4 is last.

Assuming this was a study of competitive skier test subject #1 appears to have a stability advantage over the other skiers. This would translate into quicker more precise turns (hairpin turns) and less time on their edges.

In my next post I will show what happened when the same test subjects used the skates I prepared.


  1. Nailing the Coffin Shut on Instability Training Ideas – https://simplifaster.com/articles/instability-training/

 

SKIER BALANCE: IT’S ABOUT BALANCING OPPOSING TORQUES

The subject of my 4th post published on May 14, 2013 was the role of torques in skier balance. That this was one of my most important yet least viewed posts at 109 views suggests that the role of torques in skier balance is a concept foreign to skiers especially the authorities in the ski industry. This post is a revised version supplemented with information results from a recent study on balance control strategies.


While everyone recognizes the importance of good balance in skiing, I have yet to find an definition of what is meant by good balance, let alone a description of the neurobiomechanical conditions under which a skier is in balance during actual ski maneuvers. In order to engage in a meaningful discussion of balance, one needs to be able to describe all the forces acting on the skier, especially the opposing forces acting between the soles of the feet of the skier and the snow surface (ergo – applied and ground or snow reaction forces). Without knowing the forces involved, especially torques, any discussion of balance is pure conjecture. In 1991,  I formulated a hypothetical model that described these forces.  I designed a device with biomedical engineer to capture pressure data from the 3-dimensional forces (torques) applied by the foot and leg of the skier to the internal surfaces of the boot during actual ski maneuvers.

Test subjects ranged from Olympic and World Cup champions to novice skiers. By selectively introducing constraints that interfered with the neurobiomechanics of balance even a World Cup or Olympic champion calibre skier could be reduced to the level of a struggling beginner. Alternatively configuring the research device to accommodate the neurobiomechanical associated with skiing enabled novice skiers to use  balance processes similar to those of Olympic champions. To the best of my knowledge, no one had ever done a study of this nature before and no one has ever done a similar study since.

When analyzed, the data captured using the device called into question just about everything that is accepted as fact in skiing. This study was never published. For the first time I will present the data and describe the implications in future posts. We called the device shown in the photo the Birdcage. It was fully instrumented with 17 sensors strategically placed on a 3 dimensional grid.

Birdcage

The Birdcage instrumentation package was configured to detect coordinated neuromuscularly generated multiplane torques that oppose and maintain dynamic balance against external torques acting across the running surface of the inside edge of the outside ski in contact with the source of GRF (i.e. the snow).

  1. plantarflexion-dorsiflexion
  2. inversion-eversion
  3. external/internal vertical axial tibial rotation

Ankle torques are applied to the 3 points of the tripod arch of the foot (heel, ball of big toe, ball of little toe) and can manifest as hindfoot to rearfoot torsion or twisting wherein the forefoot rotates against the rearfoot.

A recent study (1.) on the role of torques in unperturbed (static) balance and perturbed (dynamic) balance found:

During perturbed and unperturbed balance in standing, the most prevalent control strategy was an ankle strategy, which was employed for more than 90% of the time in balance.

In both postures (unperturbed and perturbed) these strategies may be described as a single segment inverted pendulum control strategy, where the multi-segment system is controlled by torque about the most inferior joint with compensatory torques about all superior joints acting in the same direction to maintain a fixed orientation between superiorsegments.

The alignment of opposing forces shown in typical force representations in discussions of ski technique is the result of the neuromuscular system effecting dynamic balance of tri-planar torques in the ankle-hip system.

NOTE: Balance does not involve knee strategies. The knee is an intermediate joint between the ankle abd hip and is controlled by ankle/hip balance synergies.

The ankle strategy is limited by the foot’s ability to exert torque in contact with the support surface, whereas the hip strategy is limited by surface friction and the ability to produce horizontal force against the support surface.

Ankle balance strategies involve what are called joint kinematics; 3 dimensional movement in space of the joint system of the ankle complex. Contrary to the widely held belief that loading the ankle in a ski boot with the intent of immobilizing the joint system will improve skier balance, impeding the joint kinematics of the ankle will disrupt or even prevent the most prevalent control strategy which is employed for more than 90% of the time in balance. In addition, this will also disrupt or even prevent the CNS from employing multi-segment balance strategies.

Regardless of which strategy is employed by the central nervous system (CNS), motion and torque about both the ankle and hip is inevitable, as accelerations of one segment will result in accelerations imposed on other segments that must be either resisted or assisted by the appropriate musculature. Ultimately, an attempt at an ankle strategy will require compensatory hip torque acting in the same direction as ankle torque to resist the load imposed on it by the acceleration of the legs. Conversely, an attempt at a hip strategy will require complementary ankle torque acting in the opposite direction to hip torque to achieve the required anti-phase rotation of the upper and lower body.

Balance is Sensory Dependent

As a final blow to skier balance supporting the arch of the foot and loading the ankle impairs and limits the transfer of vibrations from the ski to the small nerve sensory system in the balls of the feet that are activated by pressure and skin stretch resulting in a GIGO (garbage in, garbage out) adverse effect on balance.

Spectral analysis of joint kinematics during longer duration trials reveal that balance can be described as a multi-link pendulum with ankle and hip strategies viewed as ‘simultaneous coexisting excitable modes’, both always present, but one which may predominate depending upon the characteristics of the available sensory information, task or perturbation.


  1. Balance control strategies during perturbed and unperturbed balance in standing and handstand: Glen M. Blenkinsop, Matthew T. G. Pain and Michael J. Hiley – School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK – Royal Society Open Science

THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: BALANCE PLATFORM MECHANICS

Turntable rotation generated by the powerful internal rotators of the pelvis (the gluteus medius and minimus) in combination with second rocker mechanics can create a platform under the body of the outside ski and foot that a skier can stand and balance on using the same processes to balance on solid ground. The associated mechanics creates a platform under the body of the outside ski by extending  ground reaction force acting along the portion of the inside edge in contact with the snow, out under the body of the ski.

In order to understand the mechanics, we need to start with a profile through the section of the body of the ski, binding and boot sole under the ball of the foot. The graphic below is a schematic representation of a ski with a 70 mm waist and 100 mm shovel and tail with an arbitrary length of 165 mm. The total stack or stand height from the base of the ski to the surface of the boot that supports the foot is 80 mm. The uppermost portion of the schematic shows the shell sidewalls of a 335 boot in relation to the 70 mm width of the stack. A ski with a 70 mm waist will place the center ball of the foot of skiers with US Men’s 10 to 12 feet close to over the inside edge. The heavy black line at the bottom of the stack shows the projection of the sidecut width beyond the waist.The schematic serves as a base on which to overlay a free body diagram showing the forces acting across the interface of the inside edge with the snow. This is where the rubber meets the road.

There are two possible scenarios in terms of the axis on which the center of pressure W of the skier will act. Unless the foot can sufficiently pronate and especially generate impulse second rocker loading, W will lie on the proximate anatomic center of the foot and transverse center of the body of the ski as shown in the graphic below. In this location, W will create a moment arm due to the offset with the GRF Pivot under the inside edge at the waist. The resulting moment of force will externally rotate the ski and foot under load out of the turn while simultaneously rotating the leg externally.The graphic below shows the second scenario where the center of pressure W lies directly over the GRF Pivot under the inside edge. In this position, W will load the inside edge under the ball of the foot and assist edge grip. But in this configuration, rotating the ski onto its inside edge necessitates overcoming the moment of force created by the moment arm resulting from the offset between the GRF Pivot and GRF acting at the limits of the sidecut. This requires a source of torque that acts to rotate the ski into the turn about the pivot acting at the inside edge at the waist of the ski.An obvious source of torque is to use the leg to apply force to the inner aspect of the shaft of the foot; aka knee angulation. But this will not create a platform under the body of the outside ski. Applying a load to the vertical wall of the shell opposite the ball of the foot will apply torque load to center at the GRF pivot as shown in the graphic below. The moment arm is formed by the point at which the Turntable Torque is applied to the boot sidewall (green arrow) to the center of rotation at the GRF Pivot.

 

The torque applied to the vertical sidewall of the boot shell is the Effort. The sidecut of the ski is the resistance. What effect will this have on the body of the ski under the foot? There is a lot more to this subject that I will begin to expand on in my next post.

EDGE CHANGE INERTIA: WHY THE TRANSITION PHASE MATTERS

One of the most important events in the turn sequence is edge change. Yet, it is rarely mentioned in technical discussions. One of the few references I was able to find on edge change is in the CSIA Technical Reference which states:

Edge Change = Balance Change: Changing edges requires a change of balance.

Edge change occurs during an unbalanced, controlled fall in the transition phase that leads to the development of a balanced position on the outside ski as it crosses the fall line in the bottom of a turn. Properly executed, edge change leads to the development of a platform under the outside ski for the skier to stand and balance on.

The edge change sequence starts in the transition phase when a skier begins to transfer weight from the outside (downhill) ski to the inside (uphill ski). At the start of the transition, the edges of the inside ski are uphill and on the lateral (little toe) side of the foot. From a perspective of the gait cycle, the base of the ski is inverted (turned inward towards the center of the body). This is the normal configuration when the foot is unweighted in the gait cycle. The foot strikes the ground on the lateral (little toe) side and rotates about it’s long axis in the direction of eversion to bring the three points of the tripod of the foot into contact with the ground. As the foot everts, the leg rotates internally through torque coupling in the subtalar joint. The normal kinetic flow from foot strike to the support phase in mid to late stance is one of inversion of the foot/external rotation of the leg to eversion of the foot/internal rotation of the leg. Put another way, the human lower limbs will naturally rotate into a turn so long as the biomechanics are not interfered with.

At the start of the transition leading up to ski flat between edge change, the center of pressure (COP) of the weight of the body applied by the sole of the inside foot will be under the heel where it is aligned on the proximate center of the ski.

The Eversion/Internal Rotation Cascade

Transferring the weight from the outside foot and ski to the inside foot and ski in the transition phase sets in motion what I call the  Eversion/Internal Rotation Cascade. When the cascade starts, the force F W applied to the ski by the foot  by the weight of the body will impart rotational inertia as the ski rotates about the pivot point formed by its inside edge.

For the sake of simplicity, the stack of equipment between the sole of the skier’s foot and the snow is represented by a rectangle in a 3:2 ratio where the stand height is 50% higher than the width (FIS maximum stand height = 93 mm – maximum profile width = 63 mm). Sidecut is also not shown.

The following graphics show the sequence of the Eversion Cascade. Note: Internal rotation of the leg is not shown in this sequence.

The first graphic below shows the moment or torque arm ma that is set up by the offset that exists between GRF from the firm piste acting at the inside edge and the point where the center of pressure of the weight of the body acts in the plane of the base of the ski. The large red arc shows the radius of rotation. The small red arc shows the radius of the moment of force. In this sequence, the ski is rotating downhill away from the pivot at the uphill edge.

When the base of the ski comes into full contact with the surface of the snow, rotational inertia, will make it want to continue rotating about the uphill edge and penetrate into the snow surface on the downhill aspect. If the force FW applied by the weight of the body is still aligned on the transverse center of the ski, it will oppose edge change.

In my next post I will discuss how the Second Rocker affects the mechanics of edge change at ski flat.

 

THE SKI BOOT FLEX INDEX INSTABILITY PROBLEM

It has been known for decades that an unbalanced moment of force or torque will be present on the outside ski when the center of pressure of the load applied to the ski by a skier is acting along the center of the transverse axis of the ski where it is offset from GRF acting along the inside edge. Ron LeMaster acknowledges the existence of an unbalanced moment of force on the ouside ski in both The Skier’s Edge and Ultimate Skiing (Edging the skis). LeMaster states in Ultimate Skiing;

The force on the snow is offset from the center of the skier’s and creates a torque on it that tries to flatten the ski.

Ron didn’t get the mechanics right. But he correctly shows the unbalanced torque acting on the ankle joint. LeMaster tries to rationalize that ice skates are easy to cut clean arcs into ice with because the blade is located under the center of the ankle. While this is correct, ice skaters and especially hockey players employ the Two Stage Heel-Forefoot Rocker to impulse load the skate for acceleration. Hockey players refer to this as kick.

In his comment to my post, OUTSIDE SKI BALANCE BASICS: STEP-BY-STEP, Robert Colborne said:

…..In the absence of this internal rotation movement, the center of pressure remains somewhere in the middle of the forefoot, which is some distance from the medial edge of the ski, where it is needed.

The load or weight of COM is transferred to distal tibia that forms the ankle joint. This is the lower aspect of the central load-bearing axis that transfers the load W from COM to the foot. What happens after that depends on the biomechanics. But the force will tend to be applied on the proximate center of the stance foot. This is a significant problem in skiing, (one that LeMaster doesn’t offer a solution for) when the ski is on edge and there is air under the body of the ski. The unbalanced torques will move up the vertical column where they will manifest at the knee against a well stabilized femur.

But this unbalanced torque creates another problem, one that is described in a paper published in 2005 by two Italian engineers (1.) that describes how this load deforms the base of the boot shell.

The Italian study found large amounts of deformation at mean loads of up to 164% body weight were measured on the outer ski during turning. The paper suggests that the ski boot flex index is really a distortion index for the boot shell. The lower the flex index, the greater the distortion potential.

For the ski-boot – sole joint the main problem is not material failure, but large amounts of local deformation that can affect the efficiency of the locking system and the stiffness of the overall system.

Values of drift angle of some degree (>2-3°) cannot be accepted, even for a small period of time, because it results in a direct decrease of the incidence of the ski with the ground.

My post GS AND KNEE INJURIES – CONNECTING THE DOTS (2.) cites studies that found that knee injuries are highest in GS in the shortest radius turns where peak transient forces are highest.

As shown in Figure 2a FR (sum of centrifugal and weight forces) and F GROUND (ground reaction force) are not acting on the same axis thus generating a moment MGR that causes a deformation of the ski-boot-sole system (Figure 2b) leading to a rotation of the ground reaction force direction. The final effect is to reduce the centripetal reaction force of the ground, causing the skier to drift to the outside of the turn (R decreases, causing the drift event).

An imperfect condition of the ski slope will emphasize this problem, leading to difficulties maintaining constant turning radius and optimal trajectory. The use of SGS ski-boot in competitions requires a particular focus on this aspect due to the larger loads that can be produced during races.

I have added a sketch showing that the moment arm M R created by the offset between the F Ground and F R is in the plane of the base of the ski where it results in an Inversion-lateral rotation torque.

The importance of sole stiffness is demonstrated with a simplified skier model…..…ski boot torsional stiffness with respect to ski longitudinal axis in particular is very important as it deeply influences the performance of the skier during turning…. A passage over a bump or a hollow may generate a sudden change in ground reaction force that may lead to a rapid change in the drift angle delta. The ski boot must be as stiff as possible going from the lower part of the boot to the ski (i.e. lower shell-joint-sole system)

As explained in the method section using the simplified model, values of some degree cannot be accepted, even for a small period of time, because the skier stability and equilibrium could be seriously compromised especially when the radius of curvature is small. A non perfect condition of the ski slope will emphasize the problem, leading to big difficulties for maintaining constant turning radius and optimal trajectory.

This excellent paper by the two Italian engineers concludes with the following statements:

Authors pushed forward the integration of experiments and modeling on ski-boots that will lead to a design environment in which the optimal compromise between stiffness and comfort can be reached.

The possibility of measuring accurately the skier kinematics on the ski slope, not addressed in the presented study, could represent a further step in the understanding of skiing dynamics and thus could provide even more insightful ideas for the ski-boot design process.

I first recognized the shell deformation, boot board instability issue in 1980, at which time I started integrating rigid structural boot boots into the bases of boot shells I prepared for racers. The improvement in ski control and balance was significant. The instability of  boot boards associated with shell/sole deformation with 2 to 3 degrees of drift at modest loads of up to 164% body weight has significant implications for footbeds.


  1. AN INNOVATIVE SKI-BOOT: DESIGN, NUMERICAL SIMULATIONS AND TESTING – Stefano Corazza 􀀍 and Claudio Cobelli Department of Information Engineering – University of Padova, Italy – Published (online): 01 September 2005 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887325/
  2. http://wp.me/p3vZhu-zx

THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: THE ROCKER/TURNTABLE EFFECT

The Two Phase Second Rocker (Heel to Ball of Foot) described in the previous post is dependent on inertia impulse loading. A good discussion of the basics of inertia and momentum is found in Inertia, Momentum, Impulse and Kinetic Energy (1.)

Limitations of Pressure Insoles used in Skiing

A paper published on May 4, 2017 called Pressure Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing by Falda-Buscaiot T, Hintzy F, Rougier P, Lacouture P, Coulmy N. while noting that:

Pressure insoles are a useful measurement system to assess kinetic parameters during posture, gait or dynamic activities in field situations, since they have a minimal influence on the subject’s skill.

acknowledge limitations in pressure insoles:

However, several limitations should be pointed out. The compressive force is underestimated from 21% to 54% compared to a force platform, and this underestimation varies depending on the phase of the turn, the skier’s skill level, the pitch of the slope and the skiing mode.

It has been stated this underestimation originates from a significant part of the force actually being transferred through the ski boot’s cuff. As a result, the CoP trajectory also tends to be underestimated along both the anterior-posterior (A-P) and medial-lateral (M-L) axes compared to force platforms.

Forces transferred through the cuff of a ski boot to the ski can limit or even prevent the inertia impulse loading associated with the Two Phase Second Rocker/Turntable Effect. In addition, forces transferred through the cuff of a ski boot to the ski intercept forces that would otherwise be transferred to a supportive footbed or orthotic.

Rocker Roll Over

In his comment to my post, OUTSIDE SKI BALANCE BASICS: STEP-BY-STEP, Robert Colborne said:

In the absence of this internal rotation movement, the center of pressure remains somewhere in the middle of the forefoot, which is some distance from the medial edge of the ski, where it is needed.

Rock n’ Roll

To show how the Two Phase Second Rocker rocks and then rolls the inside ski onto its inside edge at ski flat during edge change, I constructed a simple simulator. The simulator is hinged so as to tip inward when the Two Phase Second Rocker shifts the center of pressure (COP) from under the heel, on the proximate center of a ski, diagonally, to the ball of the foot.

The red ball in the photo below indicates the center of gravity (COG) of the subject. When COP shifts from the proximate center to the inside edge aspect, the platform will tilt and the point of COP will drop with the COG in an over-center mechanism.


A sideways (medial) translation of the structures of the foot away from the COG will also occur as shown in the graphic below. The black lines indicate the COP center configuration of the foot. The medial translation of the foot imparts rotational inertia on the platform under the foot.

Two Phase Second Rocker: The Movie

The video below shows the Two Phase Second Rocker.

Click on the X on the right side of the lower menu bar of the video to enter full screen.

The graphic below shows to Dual Plane Turntable Effect that initiates whole leg rotation from the pelvis applying multi-plane torque to the ski platform cantilevering reaction force acting along the running edge of the outside ski out under the body of the ski. A combination of over-center mechanics and internal (medial or into the turn) application of rotation of the leg from the pelvis, counters torques resulting from external forces.


  1. http://learn.parallax.com/tutorials/robot/elev-8/understanding-physics-multirotor-flight/inertia-momentum-impulse-and-kinetic
  2. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176975