Dr Emily Splichal

NABOSO PROPRIOCEPTIVE STIMULATION INSOLES

For several weeks, I have been testing the first-ever small nerve plantar proprioceptive stimulation insole technology called NABOSO, which means “barefoot” in Czech. The surface science technology was invented by Dr. Emily Splichal and is being marketed by her in conjunction with NABOSO yoga mats and floor tiles.

Introducing Naboso Insoles by Naboso Barefoot Technology. Get ready to experience what it truly means to move from the ground up with the first-ever small nerve proprioceptive insole to hit the footwear industry.

The skin on the bottom of the foot contains thousands of (small nerve) proprioceptors, which are sensitive to different stimuli including texture, vibration, skin stretch, deep pressure and light touch. When stimulated these proprioceptors play an important role in how we maintain upright stance, activate our postural muscles and dynamically control impact forces. – Dr. Emily Splichal

http://nabosotechnology.com/about

Dr. Emily Splichal goes on to state:

The skin on the bottom of the foot plays a critical role in balance, posture, motor control and human locomotion. All footwear – including minimal footwear – to some degree blocks the necessary stimulation of these plantar proprioceptors. The result is a delay in the nervous system which can contribute to joint pain, compensations, loss of balance and inefficient movement patterns.

Naboso Insoles are backed by surface science and texture research – and have been shown to not only improve balance but also positively impact gait patterns, ankle proprioception and force production in athletes.

Dr. Splichal stresses that:

This (NABOSO insole) is an insole providing proprioceptive and neuromuscular stimulation – it is not an orthotic providing biomechanical control.

http://nabosotechnology.com/naboso-insoles/

The principle proprioceptive neural activity associated with balance responses occurs across the plantar plane. It is strongest in the 1st MPJ (big toe joint) and big toe.

Dr. Splichal cites studies that found that textured insoles increased the activity of receptors in the plantar surface of the feet with a significant, immediate effect seen in the outcome measures of static (weight bearing) and dynamic (weight symmetry index, strength symmetry) in balance tests  as well as in gait symmetry (single support and swing phases). Thus, the proprioceptive stimulation benefit of textured insoles is carried over into footwear without textured insoles. I have noticed a significant improvement in  plantar proprioceptive sensitivity when barefoot or when my feet are not bearing weight. It is as if my feet have been put to sleep by a local anesthetic which has worn off.

Dr. Splichal’s information on NABOSO states that for the first time ever it is now possible to bring the power of barefoot science and plantar proprioceptive stimulation to all footwear – regardless of support, cushion or heel toe drop.

Assuming a NABOSO is trimmed, if necessary, to fit a shoe, there will be a positive effect on plantar proprioceptive stimulation. But my experience to date has been that the plantar proprioceptive stimulation will be much more pronounced in a minimal, zero drop shoe with adequate width for fascial forefoot tensioning and correct alignment of the big toe. I have experienced the best results with NABOSO in the Xero Prio shoe with the Lems Primal 2 and a Vivobarefoot model, close seconds.

The photo below shows the Xero Prio (blue-grey) with the Lems Primal 2 (black).

Both shoes have thin soles with low resiliency (the material compresses very little). The soles are also very flexible, an important quality. The sole wearing qualities of the Xero are excellent. The Xero Prio has become my all around minimal shoe. I use it for cycling on my mountain bike fit with large flat platform pedals.

The photo below is of the NABOSO insole for my left shoe.

Initially, NABOSO insoles are perceived, but not uncomfortable. After a time, shoes feel strange without them.

Over several weeks, I have done many tests of different shoes and insoles where I compare cushioned, standard insoles to NABOSO and different shoes with and without NABOSO as well as one-on-one comparisons with different shoes on each foot. After an initial walk in period, if I remove a NABOSO insole from one of my Xero Prios, it feels as if sole of the foot with the Xero without the NABOSO is signicantly less sensitive.

The most significant aspect of trying NABOSO insoles in different shoes is that it immediately becomes apparent just how bad some shoes are. The more cushioning, the narrower the fit and the greater the heel to toe elevation of the sole, the worse the shoe feels. For example, when I compared the Xero Prio with zero drop to a Nike Free with a 5 mm drop, I immediately sensed a pronounced negative effect on my posture and muscles of my legs, especially my glutes.

A Game Changer?

Prior to NABOSO, footwear companies could make shoes that have a negative affect on posture, balance and gait because it could be argued that the benefits of protecting the soles of the feet from mechanical damage outweigh any negative effects on balance and increased susceptibility to falls and injury. But the criteria for product liability is that a product must minimize, but not necessarily eliminate, the risk of injury to the consumer. Studies of textured insoles and even thin, low resilency soled footwear have shown dramatic improvements in balance and gait while reducing the risk of falls and potential injury. The inescapable conclusion is that footwear that reduces balance and the efficiency of gait while increasing the risk of falls and potential injury fails to meet this standard. This raises the question, “Will product liability litigation in footwear be the “next shoe to drop?””

NABOSO in  Ski Boots?

I have not yet had an opportunity to test NABOSO ski boots. But 2 racers I am working with are using NABOSO in zero drop minimal shoes. Stay tuned.

 

THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE

In my US Patent 5,265,350 (November 30, 1993), I stressed the importance of avoiding any structures in the ski boot that would delay or especially prevent, the loading sequence that enables a skier to rapidly assume a position of balance in monopedal stance on the outside ski at ski flat that occurs between edge change. The 2 paragraphs of text below are excerpted from the patent.

The avoidance of any obstruction (in the ski boot) is required in order to ensure that a monopedal stance will be attained without interference or delay. Such interference would be deleterious to the user and is, therefore, undesirable.

In order for the user to enjoy maximum control of the ski, it is important that these forces be transferred as directly as possible and without delay. As previously stated, this is an object of the invention. It is also important that forces exerted by the ski on rigid base 2100 be transferred as directly as possible and without delay to the foot of the user so that appropriate muscle action can be accurately and quickly stimulated which would act to make corrections which influence the relative position of the joints in order to maintain the user’s state of balance.

What I was really referring to is what Dr. Emily Splichal describes as Time to Stabilization.

The window for stabilization for optimal loading and energy transfer is very narrow and occurs as a skier approaches the fall or rise line at the point where a turn will start. The graphic below shows the Stabilization Zone for optimal loading and energy transfer to the outside ski shown circled in pink.

The timing of impulse loading is critical. The loading impulse is applied by a short, rapid knee extension made just as the ski is about to go flat on the snow between edge change in combination with forward movement of CoM in relation to the outside foot. Extending the knee tensions the hamstrings and gastrocnemius. This will cause the ankle extend slightly creating rocker-action impulse loading of the forefoot, especially the 1st MPJ or ball of the foot.

Dr. Splichal has graciously given me permission to republish her recent post. This may well be one of the most important articles ever written pertaining to skiing and ski technique.


 Time To Stabilization & Athlete Injury Risk

by Dr Emily Splichal – Evidence Based Fitness Academy

A majority of my podiatry practice is built around treating athletes and chronic athletic injuries.   From professional dancers to marathon runners all athletes – regardless of sport or art – require the same thing – rapid stabilization for optimal loading and energy transfer.  

dancer

Why is rapid stabilization so important? 

During dynamic movement such as walking, running or jumping (or skiing – my addition), the ability to rapidly load and unload impact forces requires a baseline of stabilization.   With a rate of impact forces coming in at < 50 ms during walking and < 20 ms during running it is no wonder the rate of stabilization must be fast!

To put this a little bit more in perspective.   Our fast twitch muscle fibers don’t reach their  peak contraction till about 50 – 70ms.   So if impact is coming in at rate < 20 ms during running and your hip / knee / ankle and foot are not already stable before you strike the ground – it is too late!     It physiologically is not possible to react to impact and stabilize fast enough.

A client or athlete who is reacting to impact forces will often present with ITB syndrome, runner’s knee, peroneal tendinitis, stress fractures, shin splints – and that’s just naming a few!

Considering Time to Stabilization (TTS)

In my workshops I often say that “we are only as strong as we are stable” or that “stability is the foundation through which strength, force and energy is generated or transferred”.

acle

The precision, accuracy and anticipation of stabilization must be so well programmed into the nervous system that peak stability is happening before contact with the ground.   This is referred to pre-activation and is associated with a faster TTS.

The opposite of pre-activation stabilization is reactive stabilization and is how many – if not most – of my patients or people in general are moving.   When we think of the rate of neuromuscular coordination even a small delay (think milliseconds) will result in tonic (exaggerated) muscle contractions, micro-instability and inefficient loading responses eventually leading to neuromuscular and connective tissue fatigue and injury.

So how can you improve client and athlete TTS?

1. Pre-activate base to center stabilization pathways aka foot to core sequencing

This is THE basis to EBFA Certifications Barefoot Training Specialist and BarefootRx.   With our feet as our base, the activation and engagement of our feet to the ground is key to center or core stabilization.    Fascially, the feet and core are connected through the Deep Front Line and must be integrated and sequenced as part of a proper warm-up or movement prep.

To learn more about foot to core sequencing please view HERE

2. Consider surface science to optimize foot feedback

All surfaces are designed differently with certain surfaces actually blocking and damping the critical proprioceptive input between foot and ground.    When we think of softer surfaces and mats, research has shown a direct correlation between softer surfaces and delayed / prolonged loading responses.

IMG_1753

Harder surfaces.  Surfaces that allow the transmission of vibration.  And surfaces with textures allow more accurate and precise proprioceptive input.   Thus led to the innovation of Naboso Technology by EBFA Founder Dr Emily Splichal

Ideally if Step 1 – pre-activation of our stabilization pathway could be done on a Naboso surface this would be ideal.    More information can be found at www.nabosotechnology.com

3. Footwear to allows optimal feedback and foot function

If we follow Steps 1 & 2  and activate the neuromuscular system barefoot and from the ground up we then want to ensure this carries over as soon as we put on our shoes (or ski boots – my addition) and begin our sport or activity.

Imagine if you activate the proper neuro pathways but then put your client into a thick cushioned shoe (or ski boots – my addition).  This essentially shuts off and defeats the purpose of Step 1 & 2.   We need to ensure a proper shoe is worn to allow this carry over into sport.    So think flexible, minimal cushioning. possible textured insoles (check out Naboso Insoles launching Spring 2017)

IMG_1767

The textured insole in the shoe above is NABOSO technology.


Dr. Emily Splichal, Podiatrist and Human Movement Specialist, is the Founder of the Evidence Based Fitness Academy and Creator of the Barefoot Training Specialist®, BarefootRx® and BARE® Workout Certifications for health and wellness professionals. With over 15 years in the fitness industry, Dr Splichal has dedicated her medical career towards studying postural alignment and human movement as it relates to foot function and barefoot training.

Dr Splichal actively sees patients out of her office in Manhattan, NY with a specialty in sports medicine, biomechanics and forefoot surgery. Dr Splichal takes great pride in approaching all patients through a functional approach with the integration of full biomechanical assessments and movement screens.

Dr Splichal is actively involved in barefoot training research and barefoot education as it relates to athletic performance, injury prevention and movement longevity. Dr Splichal has presented her research and barefoot education both nationally and internationally, with her Barefoot Training Specialist® Program in over 28 countries worldwide and translated into 9 languages.

Due to her unique background Dr Splichal is able to serve as a Consultant for some of the top fitness, footwear and orthotic companies including NIKE Innovations, Trigger Point Performance Therapy, Aetrex Worldwide, Crunch Fitness and Sols.

Degrees/Certifications: Doctor of Podiatric Medicine (DPM), Master’s Human Movement (MS), NASM-CES, NASM-PES, NSCA-CPT