biomechanics

WHAT DOES HIRSCHER HAVE IN COMMON WITH BRIGNONE, WORLEY AND SHIFFRIN?

The short answer to this question is that the 4 racers share a stance with the muscles of the biokinetic chain in isometric contraction during what I term the Load Phase of a turn sequence and the ability to use the elastic recoil energy created during the Load Phase for acceleration.

One of the key visual cues of an isometric stance is an extended outside leg with small angles at the knee and ankle and a forward position of the pelvis. Another key visual cue is high hands with arms reaching forward as if the racer is trying to reach forward and hug a large barrel.

The screen shot below is of Marcel Hirscher in the December 16, 2018 Alta Bada GS that he won by 2.53 seconds.

The screen shot below is of Tessa Worley in the 2018-19 Soelden GS.

Reductionist Anatomy

A longer answer to the question posed by the title of this post, one that I will expand on in future posts, is that Hirscher, Brignone, Worely and Shiffrin are examples of the application of the principles of an emerging paradigm that is challenging the fundamental way in which muscular anatomy has long perceived muscles as separate systems with specific functions. In the new paradigm that has arisen out of recent discoveries muscles function in conjunction with the myofascial network as a wholly integrated system; one that responds and adapts to the stresses imposed on it. Since these discoveries are almost ten years old the odds are that the dominant technique of Hirscher, Brignone, Worely and Shiffrin is not by chance.

In previous posts, I described a stance based on isometric contraction as the SR Stance. SR is an abbreviation for the Stretch Reflex. Technically, a better term for the stretch reflex is the stretch-shorten cycle

The reason I chose SR for the name of the stance is that isometric contraction and the stretch reflex are not part of the narrative of ski technique. I discuss the three forms of muscle contraction in my post I-C-E: SR (2.) which I have recently updated.

The reason a ski stance based on isometric contraction provides a huge competitive advantage has to do with recent finding discussed in a 2009 article (1.) in which ultrasound imaging that allowed for quantitative assessment of the mechanisms for elastic energy storage and return at the ankle joint during human walking found that the Achilles tendon stores elastic energy as the mid stance phase progresses until the energy peaks in late midstance and is released to produce a rapid recoil with very high peak power output. The researchers named this the Catapult Mechanism (3.).

An important feature of the ankle ‘catapult mechanism’ is that the stretch and recoil of the Achilles tendon allows muscle fibers to remain nearly isometric producing high forces with very little mechanical work. In the isometric state, muscles expend much less metabolic energy to produce force when compared to muscles shortening in concentric (positive work) contractions.

Recent research has also found that during explosive movements, the contractile elements of a muscle remain in an isometric state to increase tension in the non-contractile components in an effort to produce higher levels of force. The enhanced stiffness from the contractile component can help the connective tissue rapidly store mechanical energy during the lengthening (recoil) phase delivering greater power output during the shortening phase. (4.), (5.)

What all this means is that the power advantage seen in racers like Hirscher, Brignone, Worely and Shiffrin results from an integrated system. But the human body can only function as an integrated system under conditions which allow multi-plane movement, something conventional ski boots intentionally interfere with.

In my next post I will start from what I see as the fundamental element of a ski stance based on isometric contraction and progress upward from there.


  1. It Pays to Have a Spring in Your Step – 2009 Gregory S. Sawicki1, Cara L. Lewis2, and Daniel P. Ferris2 – 1. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI; and 2. School of Kinesiology, University of Michigan, Ann Arbor, MI
  2. https://wp.me/p3vZhu-1wT
  3. Fascial Fitness: Fascia oriented training for bodywork and movement therapies – Divo G. Muller, Robert Schleip 
  4. Cutting Edge: Training the Fascial Network (Part 1) by Pete McCall M.S.
  5. Cutting Edge: Training the Fascial Network (Part 2) by Pete McCall M.S.

 

ANALYZING SKIER/RACER PERFORMANCE

In my last post (1.), I showed photos of Tessa Worely, Federica Brignone and Mikaela Shiffrin with their outside legs extended with small angles at their knees and ankles and asked Why is their outside leg extended? What advantage does it give these racers? How does it affect their ability to load and control their outside ski? So far there has only been one comment that didn’t address the questions I posed.

……… the study of biomechanics by physical educators must include cause as well as effect relationships which exist between sequential joint motions of the performer and the motion of the inanimate objects which he or she wears, rides or manipulates.

All factors must be studied in terms of the skill objective. If problems are noted in the performance of the skill, where did they originate? Within the performer? Within the sport object? Both? What precise changes must be made to obtain the skill objectives? The answer to the last question leads directly to what is known as quality teaching. The directions for improvement given to the performer must be based on scientific and technical analysis of the total skill.

The above excerpts are from a book published in 1983 called ANALYSIS OF SPORT MOTION by John W. Northrip. 

….. quality teaching – coaching of neuromuscular skills in physical education should always be preceded by an analytical process where the professional physical educator synthesizes observations and theory from scientific and technical perspectives……It must be remembered that the teaching of physical education is an art with a basis in science.

 Adjustments during the teaching process to improve performance must be made in sequential motion pattern of the involved joints. Therefore, the student of physical education must have functional knowledge of anatomic kinesiology.

Fast forward to 1987.

Few forms of athletics place as high demands on the footwear used in their performance as alpine skiing. It (the ski boot) functions as a connecting link between the binding and the body and performs a series of difficult complex tasks. 

Dr. med. H.W. Bar, Orthopedics-Sportsmedicine, member of GOTS, Murnau, West Germany (2.)

In my next post I will attempt to provide an explanation of the effect of extending the outside knee and ankle in the load phase of a turn and the role of equipment in enabling (or preventing) this action using the knowledge I have gleaned over the past 40 years.


  1. WHAT DO BRIGNONE, WORLEY AND SHIFFRIN HAVE IN COMMON?
  2. Der Schu im Sport

WHAT DO BRIGNONE, WORLEY AND SHIFFRIN HAVE IN COMMON?

Results tell the story

Soelden GS – 10/27/2018

  1. Tessa Worley –  2:00.51
  2. Federica Brignone – +0.35
  3. Mikaela Shiffrin – + 0.94

What do you see?

Tessa Worley

 

Federica Brignone

 

Mikaela Shiffrin

Killington GS – 11/24/2018

  1. Federica Brignone

Federica Brignone

Study the photos. Note that all the racers have their outside extended with a small angle at the knee. The question I will begin to address in my next post is why is the outside leg extended. What advantage does it give these racers? How does it affect their ability to load and control  their outside ski?

FEDERICA BRIGNONE: PURE PELVIC POWER

I haven’t had a chance to write posts for awhile. But Federica Brignone’s powerful performance in last Saturday’s Killington GS; one in which she showcased the power of the pelvis has served to inspire and motivate me. I dedicate this post to Federica Brignone and my Italian followers.

Molto Benne Federica, Molto Benne!

As a prelude, I normally study as much video as I can locate after a race in order to try and find the camera angles and clarity I need to do a proper analysis. But I could find very little video of the Killington GS. So please bear with lack of quality in some the images I will use in this post.

Right out of the Gate

As soon as Brignone came out of the start gate, extended her ankles and knees in the fall line and stood tall I knew she was going to stand tall on the podium.

A fraction of a second later, she flexed her ankles and knees while still in the fall line. This was very significant because it indicated to me that she has the ability to flex her ankles and move her shank about 12 or more degrees against low resistance within the shaft of her boots. I call this ankle-flex free play.

To find out why low resistance ankle flexion is important please read (or re-read) my post THE SHOCKING TRUTH ABOUT POWER STRAPS (1.), which remains my most viewed post ever. Then think about the implications of Brignone’s ability to extend her ankle and especially her knee for the position of COM in her pelvis in relation to her feet.

Here’s a hint: The femur is significantly longer than the tibia.

To be continued.


  1. https://wp.me/p3vZhu-UB

THE 2018 SOELDEN GS: A LITMUS TEST OF DYNAMIC STABILITY

Challenging  course conditions, especially in GS, are the litmus test of dynamic stability. The 2018 World Cup GS at Soelden had challenging conditions in spades.

The ability to rapidly achieve dynamic stability across the inside edge of the outside ski is key to moving the Center of Force forward to the point where the biokinetic chain of the outside leg attains sufficient tension to enable the stretch reflex. The stretch reflex (SR) can then modulate pertubations due to asperities in snow surface and terrain with ankle strategies. The principle muscle in ankle balance synergies is the soleus. Dynamic stability enables a racer to float between turns, accelerate under gravity then land on line and load the outside ski. A racer with good dynamic stability is on and off the edges in milliseconds and back into the float phase. Like a skilled gymnast elite skiers and racers can choose their line and stick their landing. Tessa Worely excelled at this in the 2018 Soelden GS.

Tell Tale Signs of Dynamic Stability

Key indicators of dynamic stability are a quiet upper body and the speed at which a racer achieves their line and crosses over into the new turn with their upper body. It’s like watching a flat rock thrown low skipping off water; fly-skip-fly-skip.

In my post, WHY YOUNG TALENTED SKI RACERS FAIL AND EVENTUALLY QUIT RACING (1.), I discuss the 3 levels of balance:

  1. The first reaction is the myotatic stretch reflex, which appears in response to changes in the position of the ankle joints, and is recorded in the triceps surae muscles. This is the earliest mechanism, which increases the activity of the muscles surrounding a joint that is subject to destabilization. Spinal  reflex triggered by the myotatic stretch reflex response causes the muscle to contract resulting in the stiffening of the surrounding joints as a response to the stimulus that has disturbed the balance. For example, changes in the angle of the joints of the lower limbs are followed by a reflexive (fascial) tensioning of adjacent muscles. The subsequent release of the reaction prevents excessive mobility of the joints and stabilises the posture once again.
  2. The next reflex in the process of balancing is the balance-correcting response, which is evoked in response to a strongly destabilising stimulus. This reactive response has a multi-muscle range, and occurs almost simultaneously in the muscles of the lower limbs, torso and neck, while the mechanisms that initiate the reaction are centrally coordinated.
  3. The last of the three types of muscular reaction is the balance-stabilising response. In a situation of a sudden loss of balance, a myotatic stretch reflex first occurs and is then is followed by a balance correcting response, which prevents or attempts to prevent a fall.

I call these balance responses Green (postural reaction 1), Orange (postural reaction 2) and Red (postural reaction 3).

If a racer is no able to use the myotatic reflex (Green = Normal) balance response, the CNS shifts to Level 2 (Orange = Caution) or even Level 3 (Red = DANGER).

Level 1 balance is characterized by a stable, well-controlled upper body (aka quiet upper body) with well controlled and directed positions of the arms.

When the myotatic (stretch) reflex is compromised by restriction of the ankle flexion range required to tension the soleus the balance system will shift to level 2 or level 3 depending on the degree of interference. As the degree of interference with required range of ankle flexion increases the degree of reflexive balance will progress from small, rapid, reactive arm movements to gross reactive arm movements that eventually include gross movements of the torso.

The authors of the Polish skier balance study cited in my post state that ski boots exclude the ankle joint complex from the process of maintaining the stability of the body. However, I don’t believe this is the case with all skiers and especially all racers as evidenced by Soelden video of Tessa Worley, Federica Brignone and Michaela Shiffrin. In my next post I will discuss what I look for in analyzing that suggests dynamic stability and especially a lack of dynamic stability and the indications of compromise and the potential cause.

In the meantime, here’s something to think about.

Early in my boot modification career I came to the conclusion that some skiers, especially racers, were born with the right shape of feet and legs (2.) and this explained why they could ski in ski boots right out of the box with minimal or no modifications better than the majority of skiers even after extensive boot modifications. In a recent series of posts I discussed the results of the 2012 skate study that I modified hockey skates for; the NS (New Skates – Blue bars in the graphics below). The modifications I made were based on ski boot modifications that had resulted in dramatic improvement in performance and race results. Although I optimistically predicted improvements in performance metrics of at least 10% (110%) based on my experience with World Cup skiers, I knew that there was the possibility of a wild card competitive skater who was already close to their maximum performance in their OS (Own Skates – Red bars in the graphics below). If this were the case the skater would realize minimal improvement from the New Skates.

My previous posts only included the results for four competitive skaters. There were actually five competitive skaters in the study. Skater number 1 was the wild card. Look what happened to the results when the wild card skater was added.Look carefully at the graph of the Impulse Force below. Compare Skater number one’s Impulse Force results with the Peak Force results in the preceding graph.This raises the question: Do Tessa Worely, Federica Brignone, Mikaela Shiffrin and other top World Cup racers have the right shape of feet and legs or do they have the right modifications made to their ski boots.


  1. (https://skimoves.me/2017/02/15/why-young-talented-ski-racers-fail-and-eventually-quit-racing/)
  2. THE IDEAL SKIER’S FOOT AND LEG – https://wp.me/p3vZhu-qf

 

 

 

WHY TRYING TO COPY HIRSCHER AND SHIFFRIN’S MOVES DOESN’T WORK – PART 2

In previous posts I discussed the two studies (1, 2) done by the University of Ottawa in 1998 that analyzed pressure under the feet of elite alpine ski instructors

The pressure data from the study that used 6 elite alpine ski instructors found maximal (peak) force ranged from a high of 1454 Newtons to a low of 522 Newtons. The graph below compares the peak force seen in pressure data captured from the 4 competitive skaters in their own skates from my last post to the highest and lowest peak force seen in pressure data captured from the 6 elite alpine ski instructors used in the 1998 University of Ottawa study.

In consideration of the fact that the researchers commented that force-time histories revealed that forces of up to 3 times body weight can be attained during high performance recreational skiing it is interesting that the peak force of one of the 6 elite alpine ski instructors in the study was less than the lowest peak force of one of the 4 competitive skaters in the 2012 University of Ottawa study while the highest peak force of one of the 6 elite alpine ski instructors in the 1998 study was almost twice the highest peak force of one of the 4 competitive skaters in the 2012 University of Ottawa study.

A significant challenge in attempting to conduct foot pressure studies with alpine skiers is the variability of the slope and environmental and piste conditions. Test conditions and variables, especially ice, can be tightly controlled in the conditioned environment of an indoor skating rink.

Although the studies did not provide pressure data that compared peak and average pressures for different ski instructors, the peak forces from one study reached up to 30 newtons per square centimetre.

In the spring of 2012 I was asked to modify a number of pairs of the same brand and model of a hockey skate for use in a study that would compare metrics derived from pressure data captured from a competitive skater’s own skates to the same metrics from data acquired  from skates I had modified. I saw this as an opportunity to document the effect of modifications made to hockey skates based on the principles of neurobiomechanics described in my patents and this blog. When I speculated that the metrics derived from the pressure data might show improvements as high as 10% (i.e. 110%) I was told that the study was unlikely to result in more than a single digit improvement of approximately 2% or 3%.

I modified the pairs of skates in the shop in the garage of my home near Vancouver. The modifications were general in nature and made without the benefit of data on the feet of the test subjects. No modifications were made after I shipped the hockey skates to the University of Ottawa. I was not involved in the design of the study protocol or the actual study. I was hopeful that the study would produce meaningful results because it would have implications that could be extrapolated to alpine skiing.

The graph below shows the highest peak force in Newtons recorded for each of the 4 competitive skaters in their own hockey skates (blue = OS) and in the hockey skates that I modified (red = NS). The improvement was immediate with little or no run in period in which to adapt. The percentage improvement for each skater is shown at the top of each bar.

The mean (i.e. average) improvement was approximately 190%. The only factor that improvements of this magnitude could be attributed to is improved dynamic stability resulting from an improved functional environment in the skate for the foot and leg of the user.

……. to be continued in Part 3.


  1.  ANALYSIS OF THE DISTRIBUTION OF PRESSURES UNDER THE FEET OF ELITE ALPINE SKI INSTRUCTORS – Dany Lafontaine, M.Sc.1,2,3, Mario Lamontagne, Ph.D., Daniel Dupuis, M.Sc.1,2, Binta Diallo, B.Sc.: Faculty of Health Sciences1, School of Human Kinetics, Department of Cellular and Molecular Medicine, Anatomy program, University of Ottawa, Ottawa, Ontario, Canada.
  2. ANALYSIS OF THE DISTRIBUTION OF PRESSURE UNDER THE FEET OF ELITE ALPINE SKI INSTRUCTORS – Dany Lafontaine, Mario Lamontagne, Daniel Dupuis, Binta Diallo, University of Ottawa, Ottawa, Ontario, Canada

THE HIRSCHER/SHIFFRIN HAIRPIN TURN EXPLAINED

The topics of interest in recent views of my blog combined with comments on online forums on ski technique where nebulous terms such as pressure and tipping are an integral part of the narrative, have highlighted the need for a uniform frame of reference as a basis for meaningful discussions of ski technique as well as for the analysis and accurate identification of factors that explain the superior technique of racers like Marcel Hirscher and Mikaela Shiffrin. Simply trying to emulate the moves of the great skiers without re-creating the equipment factors that enable superior performance is not a productive exercise.

I touched on some of the factors that enable Marcel Hirscher and Mikaela Shiffrin to dominate their competition in my posts WHY SHIFFRIN AND HIRSCHER ARE DOMINATING (1.) and WHY HIRSCHER AND SHIFFRIN CAN CROSS THE LINE (2.). Over the coming weeks, I will post on the factors that I believe explain the ability of Hirscher and Shiffrin to make rapid, abbreviated hairpin turns even on the steep pitches of a course using what I call the problem-solving matrix jigsaw puzzle format. In contrast to the linear step-by-step progression problem-solving format, the matrix jigsaw puzzle format lays out information relevant to a situation in a grid format much like a jigsaw puzzle.  Known factors are assembled where there is a fit with the interfaces and arranged in relation to other components until a solution begins to emerge much like a coherent picture begins to emerge in a jigsaw puzzle as the pieces are correctly assembled. As the picture becomes more clear, tentative connections between the known segments are hypothesized to try and extrapolate the big picture. As the process progresses, less certain or flawed information is discarded and replaced with more certain information

A lot of critical information on the neurobiomechanics and even the mechanics and physics of skiing is either missing, misapplied or misunderstood in the narrative of ski equipment and technique.

Biomechanics of Sports Shoes

A valuable reference on neurobiomechanics and the future of sports shoes is the technical text, Biomechanics of Sports Shoes by Benno M. Nigg. Used in conjunction with the chapter on the Ski Boot in the medical text, The Shoe in Sport, valuable insights can be gleaned on the mechanics, neurobiomechanics and physics of skiing.

Nigg’s book can be ordered at NiggShoeBook@kin.ucalgary.ca. The following chapters in particular contain information relevant to skiing:

3. Functional Biomechanics of the Lower Extremities (pp 79 to 123) – contains essential information on the human ankle joint complex, tibial rotation movement coupling and foot torsion.

4. Sensory System of the Lower Extremities (pp 243 to 253) – contains essential information on the sensory system responsible for balance and precise movement, both of which are key to effective skiing.

In order to advance skiing as a science, a mutual objective must be getting the right answer as opposed to a need to be right.

The wisdom of Albert Einstein is appropriate.

A man should look for what is, and not for what he thinks should be.

To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science.

We cannot solve our problems with the same thinking we used when we created them.

If you can’t explain it simply, you don’t understand it well enough.

In my next post, I will start laying out the functional principles that I currently believe explain the factors that enable the superior performance of racers like Marcel Hirscher and Mikaela Shiffrin and their ability to rapidly redirect their line and maximally accelerate by making rapid, abbreviated, hairpin turns.


  1. https://wp.me/p3vZhu-2q3
  2. https://wp.me/p3vZhu-2qo