Note to the reader

The post that follows was originally published on March 1, 2016. At the time that I wrote it, I was trying to identify the optimal net (total) ramp angle or NRA using fixed angle ramps. But I found the process to be inconclusive for reasons I give in my recent posts on the dynamic ramp assessment device. I am reposting this older post because many of the concepts expressed are even more relevant in view of the results seen with the dynamic ramp assessment device and boot boards altered to the same ramp angle identified in dynamic testing.


The foundation of a strong technique is a strong stance. But what makes a strong stance? The angle of the combined ramps of the binding and boot board or zeppa in relation to the base of the ski. If the net ramp angle weren’t important, binding and boot makers would make their products with no ramp. If ramp angle doesn’t make a difference, why bother? But not only does net ramp angle make a difference, it has a significant effect on stance.  Stance affects balance and muscle power, especially the ability of eccentric gastrocnemius-soleus complex muscle contraction to absorb shocks that would otherwise be transmitted up the leg to the knees and back. I discussed some of these issues in WHAT’S YOUR ANGLE? – : ‎

If there were a problem, and there is, the ski industry is all over the place especially when in comes to binding ramp. There doesn’t appear to be any industry standards and especially any continuity between products. Worse, most skiers assume that their ski boots are putting them in the optimal stance. Without a reference they have no way of knowing. The Stance Ramp can give them that reference especially when it comes to how much ramp is enough, how much ramp is too much and how much ramp is too little.

Note Added March 19, 2018 – Having a kinesthetic sense of a stance based on tensegrity gives a skier a valuable tool that when used in a structured process can help them assess the effect of zeppa-delta ramp angle and the constraint imposed on their feet and legs by the structures of a ski boot.

In 1978, when I was building boots for female racers with small feet, I noticed that they were skiing like they were wearing high heel shoes. When I started checking their bindings and boot board ramps, I found out why. Some had 10 or 12 degrees or more of net ramp angle. After I started doing stance training with racers on a ramped board I discovered through empirical experiments that about 3 degrees of ramp angle seemed to give skiers the strongest stance.

Note Added March 19, 2018 – It now appears as if 3 degrees is the upper limit of the zone of stability. This explains why skiers started to ski better when the net ramp angle approached 3 degrees.

I didn’t really understand why until much later. Was the process scientific? No, not at all. Do studies of this critical issue need to be done? Absolutely. If I figured out that ramp angle was a critical issue almost 40 years ago, why is it that no studies appear to have done in the intervening years to determine the affects of ramp angle and identity the optimal angle?

With input from skiers in different parts of the world over the past two years, I have narrowed the ideal ramp angle down to about 2.7 degrees. This seems to be something of a standard in World Cup. Through experiments over the past few months, I have found that changes of 0.1 degrees can make a significant and easily perceivable difference. Optimal ramp angle isn’t just critical for World Cup racers, it is critical for all skiers. The easiest way to convince yourself of the importance of optimal ramp angle is for you to experience the effects of ramp angle through experimentation. How? With a Stance Ramp set to a base reference angle of 2.5 degrees.

The Stance Ramp lets skiers stand in their ski stance (barefoot is best) on a flat, level, surface then assume the same stance on the Stance Ramp, compare the kinaesthetic sense and judge whether they feel stronger of weaker. The angle of the Stance Ramp can be predictably increased or decreased by inserting shims at either end between the ramp and the surface it is supported on. When the ramp angle that makes the stance feel the strongest is arrived at, it can compared to the ramp angle of the ski boot board by having one foot on the Stance Ramp and the other in the ski boot.

The best part? The Stance Ramp is easy and inexpensive to make with readily available materials. I made mine out of some scraps of plywood I had lying around. Here’s what the Stance Ramp I made looks like. You stand with one foot on either side of the stiffener in the center with your heels at the high end (left end in the photo below).


Here’s a top (plan) view. It is a good idea to check the surface the ramp will sit on to make sure it is very close to level.


Here’s the underside of the Stance Ramp showing the element at the rear that gives the ramp its 2.5 degree angle. The stiffener in the center is important to ensure the ramp doesn’t flex under your weight.


The sketch below is a basic plan for a Stance Ramp. The only critical details are the height or thickness of the element that lifts the rear aspect of the ramp to achieve and 2.5 degree angle (angle A) and the distance the lift element is placed from the front edge of the ramp. The stiffening element in the center of my ramp is 8 cm wide. The ramp has to be big enough to stand with the feet under the hips and long enough to accommodate the length of the feet.

Stance Ramp

An online right angle calculator such as the one at can be used to calculate the spacing of the lift element from the low end (front edge) of the ramp based on its thickness.

SR calculate

Once the optimal ramp angle is arrived at, the Stance Ramp can be used in combination with the ski boot shell to confirm that the boot board is at the same angle.


In my next post, I will discuss what I call the Resistive Shank Angle that is the base to build  a strong stance on.


This post contains the most important information I have ever written on skiing. It concerns the most important discovery I have made since I began to cast a critical eye on the positions of the various experts about 45 years ago; a method to determine the optimal personal ramp angle of a skier/racer.

By 1978, subjective experiments had taught me that a total ramp angle between the sole of the foot and the base of a ski of more than 3 degrees could have significant adverse effects on skier stability, balance and the ability to control the direction and especially the edge angle, of a ski. Wherever possible, I tried to limit total ramp angle (boot boards + bindings) to below or close to 3 degrees. But ski boot and binding construction often limited my ability to reach this objective. It was limitations in the construction of my current Head World Cup boot that presented challenges in getting the boot board ramp angle below 3 degrees. Through a concerted effort I had managed to reduce ramp angle to 3.3 degrees (bindings are zero) with a noticeable improvement in balance, ski and edge control. But the results of my recent NABOSO insole test suggested that the boot board ramp angle needed to be a lot lower.

The Dynamic Ski Stance Theory

A standard test of the human balance system is to subject a subject to dynamic changes in the platform under their feet. Over the past few years, I made numerous attempts to find the optimal ramp angle for skiing. One method involved assuming my strongest stance on a hard, flat level surface then stepping onto a plate shimmed to a fixed angle then repeating the process with the plate shimmed to a different angle. The results were inconclusive. Every time I went back to the hard, flat level starting surface my balance system seemed to reset. I had to get the angle of the tilted plate well over 3 degrees before I began to sense obvious instability. This led to my positing of a theory that the angle of a plate that a skier is standing on needs to be changed as the skier goes through a stance protocol designed to test stability and what I call a rooted or grounded connection where the skier feels as if their feet are literally rooted in the snow.

Research is Urgently Needed

Before I go any further I want to stress that I believe that an idea, no matter how compelling, is nothing more than a theory until it has been thoroughly tested and has withstood rigorous scrutiny. Even then, no theory should be immune to challenges. Research on this subject is urgently needed and long overdue. With this in mind, I designed the dynamic stance assessment device so it can be easily made with reasonable skills and readily available, inexpensive materials. I have recently completed a 4th generation prototype to serve this end. But a much more sophisticated device can and should be made and used by academic researchers. A servo motor driven ramp with a data acquisition package is the preferred option.

Stance Training is Essential

In order to obtain accurate results with the dynamic stance assessment ramp it is essential that the subject being tested undergo kinesthetic stance training and follow a protocol during testing that is designed to help the subject assess the effect of changes in ramp angle. It is disturbing that few of the skiers tested so far have a kinesthetic sense of the elements of a strong stance. Most have never sensed a strong stance. Worse, no ski pro or coach has ever discussed this crucial aspect of skiing with them. It appears as if it is simply assumed that a skier will automatically find their optimal stance. I can unequivocally state that this is not the case.

Dynamic Stance Ramp Test Results

  • The majority of skiers tested so far were most stable at ramp angles between 2.0 and 2.5 degrees.
  • A number of skiers, myself included, were most stable at close to or under 1.2 degrees.
  • One skier was most stable at 1.6 degrees.
  • One skier appeared to be relatively insensitive to ramp angle until it was above 2.8 degrees.
  • After training, most skiers were sensitive to changes of 0.1 degrees.
  • No skier tested so far was stable over 2.8 degrees.
  • Adding NABOSO insoles further reduced the ramp angle.

I tested most stable at 1.2 degrees; 2.1 degrees less than my existing boot board ramp angle. In order to reduce the boot board ramp angle to 1.2 degrees, I had to raise the toe end of my boot board 9 mm and lower the heel 2 mm for a total reduction of 11 mm.

First On Snow Impressions

Walking in my ski boots with the corrected boot board ramp angle immediately felt different. But the huge impact didn’t come until I started moving over the surface of the snow on my skis. Then the whole world seemed to change. I had a huge deja-vu moment; one that took me back to the solid, stable feeling I had under my feet in my first low-cut leather plastic soled ski boots. It was then that I realized that it was the jacked up heels of my first all plastic, rigid shell ski boots 45 years ago that had destroyed my balance and confidence on skis. This is a big miss for the ski industry, one that should have been caught by those who promote themselves as the experts in skiing, but wasn’t. This miss has huge implications for skiers at every level and ability all the way up to the World Cup. A skier, but especially a racer with a sub-optimal ramp angle will revert to an unstable weight on the heels, back seat Defensive Stance in which the skier is incapable of recruiting the enormous power of the glutes and optimal sensorimotor processes.

First generation device in action. Ratchet socket wrenches raise the ramp by turning bolts set into T-Nuts on each end.

Digital SmartTool electronic level accurate to 2 decimal places

Fourth Generation Stance Ramp assessment prototype. Two x two wood stiffening elements added to the platform.

The skiing of those whose ramp angle has been optimized is elevated to a whole new level provoking immediate comments like the difference is ‘night and day‘. After my transformation, I now believe that until ramp angle is optimized, everything else is irrelevant and that no amount of footbeds, orthotics, cants, alignment or custom fitting can overcome the adverse affect of sub-optimal ramp.








Step 1 of the synergy 5 Step performance Program described in my last post is a Footbed Check using the Novel Pedar insole pressure analysis system.

Step 3 of the program is the Ski Boot Assessment detailed below. As with the 5 Step performance Program, the Ski Boot Assessment protocol and report were intended to serve as a template to base future programs on. The assessment report was intended to provide clients with information on the effects of their ski boots on their performance and/or as a work order for them to take to a boot-fitter to have any necessary issues identified in the report addressed.  Synergy Sports Performance Consultants Ltd. did not sell products or perform boot modifications.


My next post will be called FOOTBEDS: THE GOOD, BAD AND THE UGLY.






Almost 40 years ago to the day, the head of the Whistler Pro Patrol, whose boots I had worked on, introduced me to Nancy Greene in the Roundhouse restaurant on top of Whistler Mountain. The rest is, as they say, history. Nancy asked me if I would work on her ski boots. She was so impressed by the results of my work that she approached the National Ski Team to make arrangements for me to work with some of Canada’s best racers.

Recently, while going through some archived files, I found copies of Nancy’s communication with the Program Director of the National Ski Team, Andrzej Kozbial. When Nancy approached me about working with our National Team, I stressed to her that I did not see any potential arrangement with the team as a job opportunity but instead as a vehicle where I could gain further experience and knowledge while providing a crucial service to the team and furthering the sport of skiing.

The graphic below is an excerpt copied from Nancy’s first letter of April 26, 1978 to the National Ski Team Program Director.

At the time that I wrote my US Patent 5,265,350 in early 1992, the intent and purpose of the detailed and lengthy specification was to provide a repository of the knowledge I had acquired to date to serve as a legacy for skiers and skiing to help advance the sport. While this information was in support of the inventions disclosed in the patent, the majority of the information was not subject to protection under the terms of the patent. The information was open access to the world. This was my intent.

In spring of 2000, I formed a company with 2 partners for the 2000-2001 ski season called Synergy Sports Performance Consultants Ltd. The objective of the venture was to gain further experience and knowledge and create a model that could be used as a template for future skier performance programs.

The following series of graphics are from Power Point presentations synergy made to ski schools.

The following graphic is the poster that described the synergy 5 Step Performance Program.

5 Step Performance Program description

The synergy Analysis Program looks at how your body interfaces with your ski equipment; primarily your footbeds and boots because this is the connection to your equipment and through it to the snow.

Synergy offers the program as a package made up of 5 components. They can either be taken as the complete package [recommended], several components or steps at once, or one component at time. Synergy recommends that you begin at step 1 and follow the sequence in numerical order. But the order can be arranged however you wish to suit your needs. The choice is yours.

1.Biomechanical Assessment

Good foot function is the key to control. That’s why the first thing we thing we assess is your biomechanical function. What that means is that we look at how well your foot and lower limb works. The examination is done by a podiatrist who looks at how your foot functions and how the lower limbs all connect.  Then we see how effectively your feet interface with the ground by putting you on insoles that read the pressures under your feet. We coach you through some balance movements while we watch how your foot functions while our computer records the results

2. Footbed Assessment

Footbeds can have a positive, neutral or negative effect on the function of your feet.

That’s why the next thing we check is how your foot interfaces with your footbed or orthotic.  We make sure that it allows your foot to function as well as it should without one.  And if your foot needs some assistance for optimal function we make sure the footbed is helping your foot do what it needs to do.

3. Ski Boot Assessment

Now that your foot is functioning optimally we make sure your ski boot lets it keep functioning. We conduct a thorough examination of your boot and provide you with a report that tells you how your boot is affecting your performance. Most important, we tell you what has to be done to fix the problem.

4. Kinesthetic Training

Skiing is about making the right moves. Kinesthetic Training is next. It teaches you how to tell when your body is making those moves. What is Kinesthetic Training? In simple terms it means to train your body to associate a feeling or sense with the right movements made at the right time. It is feeling and bringing about an awareness so you know when you are doing it right because we have taken you there and you have felt it. A picture may be worth a thousand words, but in skiing a feeling is worth a thousand pictures. We bring you to understand what you should feel in your foot at the start of the turn and then what it feels like to settle and balance onto the foot that drives the ski. By acquiring this sense you become more aware of how to allow your foot to transfer energy directly to the edge of the ski by using the body the way it was designed to be used. Remember, your body was not made to be a lever.

5. On-Hill Data Collection

This is where everything comes together. We move to the ski hill for this part of the package. We meet up top on Whistler or Blackcomb Mountain. We put our pressure insoles in your ski boots.  A pair of cables from the insoles goes up your ski pants where it connects to the data box [a kind of mini computer] we attached to your waistband.  Then we go out for a run on moderate, groomed terrain.  We record data in three takes in medium radius turns at a speed you are most comfortable with. While this is happening we videotape your skiing. Then we head into the lodge and synchronize the video with your foot pressure data. When this is done we watch your foot function in your boots on the computer screen on one side while we study your ski video on the other side of the screen. This way we confirm that your foot is functioning optimally as confirmed by analyzing your movement patterns and the timing of your skills.

My next post will be on the synergy Boot Assessment program.



A recent post on The Foot Collective FaceBook page titled Humans aren’t meant to walk on ramps!, highlighted the problems caused by elevating the heel above the forefoot known in the footwear industry as drop. Like the author of the post, I also wear zero drop shoes like Xero and Lems exclusively  (with NABOSO insoles) and spend all of my time indoors barefoot. Like the author, I too have experienced an immediate, unnatural and a sense of disorientation in terms of a connection with the ground, when I have worn dress shoes and winter boots with moderate drop.

While some amount of boot board ramp angle or zeppa appears to necessary for a strong, tensioned stance (what I refer to as a planted or rooted stance), the amount of zeppa is turning to be much less than I originally thought. It may be less than 1.5 degrees total (zeppa + delta). Assuming zero delta, there appears to be a very narrow range within which zeppa is optimal after which a tipping point is reached in terms of adverse effects on the motor control and balance systems.

It has also become apparent that some racers are tuning ski response by adjusting binding delta. Zeppa and delta each have a different effect on ski response especially edge control and the ability of a skier to resist the forces acting on them in the load phase of a turn. I will discuss issue this in a future post.

Humans aren’t meant to walk on ramps!

Powerful post by TFC Educator @optimize.physiotherapy
Why do most shoes have a heel on them?
This really hit home the other day when I put on my winter boots (because it snows in November in Canada). Being someone who goes barefoot all day at work and at home (and wears zero drop shoes), it was a very unnatural feeling. It really threw my walking off, and I noticed the effects immediately. It changed the way I walked, stood, and made me use different muscles.
Humans are meant to have a flat base. No other animal wears mini ramps on their feet, but we do. The problem is that your body adapts to having a heel on, and it works different from a biomechanical perspective in any given movement pattern (the higher the heel, the worse the effect…but even most casual, running, and gym shoes have heels)

One thing it really does is affect your ankle/foot function. It has a huge effect on ankle ROM and tissue tension around the ankle. The problem is, when you wear a heel all day at work/at the gym/walking around, your tissues adaptively shorten and you don’t require as much ankle ROM. But then you take your shoes off and walk, go up your stairs, squat down to get things around the house etc. This is where people have issues. Not only at the foot/ankle but all the way upstream at other joints

Ankle ROM is incredibly important, and walking on a ramped surface all the time is incredibly unnatural. So do yourself a favour and spend less time in heeled footwear or get rid of it altogether

The Foot Collective is a group of Canadian physical therapists on a mission to help humans reclaim strong, functional and painfree feet through foot health education.

The Foot Collective are empowering people with the knowledge they need protect their feet from the dangers of modern footwear and the guidance to fix their own feet.


When a World Cup racer wins a GS by a commanding margin, it’s a sure sign they’ve crossed the line and the gravity of the situation is significant. But I’m not talking about  breaking any rules. Instead, I’m referring to Hirscher and Shiffrin mobilizing the force of gravity by jumping across the rise line above the gate and/or minimizing pressure while rotating their skis across the rise line towards the gate so the edges of their outside ski progressively engage and lock up as they extend and incline closing the kinetic chain. Knee extension, in combination with ankle extension, uses the momentum of COM in conjunction with the force of gravity to progressively engage and apply force to the outside ski.

Reilly McGlashan has an excellent YouTube analysis of Marcel Hirscher using this technique in the 2017 Alta Badia GS (1.) The technique Hirscher and now Mikaela Shiffrin are using relates directly to the second rocker/internal rotation, impulse loading mechanism I described in a series of posts. The text below is excerpted from a comment I posted on McGlashan’s YouTube video analysis of Hirscher.

Hirscher progressively engages his edges, especially on his outside ski then hooks a tight arc close to the gate to establish his line. Once he has established his line, he no longer needs his outside ski. He gets off it in milliseconds and uses the rebound energy to project forward with only enough pressure on his uphill (new outside) ski to influence his trajectory of inertia so his COM enters the rise line at a low angle of intersection. He gets rebound energy from the loading  of his outside ski and from what amounts to a plyometric release of muscle tension from the biokinetic chain of muscles extending from the balls of his outside foot to his pelvis. The energy is created by the vertical drop from above the gate to below the gate similar to jumping off a box, landing and then making a plyometric rebound. Hirscher is skiing the optimal way and it shows on the clock and leader board.

Replicating the mechanism in a static environment is not possible because there is no inertia. But a device I have designed and constructed enables the mechanism to be rehearsed with the same feeling as in skiing.

The key is loading the forebody of the outside ski with a shovel down position as the leg is rotating the ski into the turn. This sets up the second rocker impulse loading mechanism that tips the ski onto its inside edge. Extending the knee and ankle uses momentum to exert a force on the snow with the ski.

The photo below shows the training mechanism head on. The white horizontal arms represent the sidecut of the ski. The platform under the foot can be adjusted transversely to change the sensitivity. Vertical plates set beside the ball of the foot and on the outer corner and behind the heel transfer turntable rotation torque to the ski created by rotating the leg internally with the glutes. The platform will only tilt under impulse loading if the second rocker can engage. Few skiers can use this mechanism because their ski boots do not accommodate second rocker biomechanics.

The link below is to a video that shows the effect of extending the knee and ankle while moving the hips forward and over the support foot (monopedal function). The stack height and minimum profile width of are FIS 93 mm/63 mm. Rotation in itself will not cause the device to tip onto its inside edge if centre of pressure is on the anatomic centre of the foot (through the centre of the heel and ball of the second toe).

Dr. Emily Splichal’s recent webinar on the Science of Sensory Sequencing and Afferent Stimulation (2.) is relevant to motor control and cognitive development associated with high performance skiing. Pay careful attention to Dr. Splichal’s discussion of the role of mechanoceptors and the fact there are none on the inner (medial) aspect of the arches of the feet which is why footbeds or anything that impinges on the inner arch is a bad thing. I will discuss the implications of Dr. Splichal’s webinar in a future post.

In my next post, I will provide detailed information on the training device.