There are some who can benefit from footbeds or orthotics and some who do actually need them. But these groups are the rare exception. And they are unlikely to be skiers.

Orthotics. The pros / cons of orthotics in today’s society!

In a recent YouTube video (1.), Podiatrist & Human Movement Specialist, Dr Emily Splichal, explores the concept of orthotics and their role in today’s society. Dr. Splichal doesn’t pull any punches when she says:

“…..I have been through the conventional podiatric school and been fed pretty much the bullshit from podiatry of how every single person needs to be in orthotics, that our foot is not able to support itself without orthotics……if we do not use orthotics our foot is going to completely collapse  and you are going to lose your arch…….”

“……Our foot is designed to support itself. If we actually needed orthotics, we would be born…..we would come out of the womb, with orthotics on our feet.”

Meantime, The Foot Collective  asks (2.) Are you promoting weak feet?

  • Anything you use for artificial support at the feet (footwear with arch support & orthotics) your brain takes into account and accommodates for it.
  • That means if you provide your foot support your brain shuts down the natural arch supporters to reduce un-necessary energy expenditure.
  • Stop using support to help with pronation and understand why your feet pronate in the first place – because they are weak.
  • Strong feet = strong foundation = strong body.

The Real Source of Support for the Arch

Ray McClanahan, D.P.M. offers a perspective on the issue of Arch Support in his post on the CorrectToes blog (3.)

Are Custom Footbeds and Orthotics better than stock insoles?

In his post of August 20, 2017, Custom Foot Orthotics; No Better Than Stock Insoles (4.), Rick Merriam, of Engaging Muscles, explores the issue of orthotics in depth.

Prior to being told that supportive insoles are the way to go, I think it’s safe to say that all of those people didn’t know what they didn’t know.

The erroneous assumption that every skier needs footbeds or orthotics was made at a time when little  was known about the function of the foot and lower limb, especially in late stance. I was one of those who didn’t know what I didn’t know when initially when down the ‘the foot needs to be supported in skiing’ road up until I realized what I didn’t know and took steps to acquire the requisite knowledge.

Footbeds; is anyone checking what they do?

In 2000, I formed a company called Synergy Sports Performance Consultants (5). Synergys’ product was high quality information. One of my partners, UK Podiatrist, Sophie Cox, was trained by Novel of Germany and was one of the few experts in the world at that time on the Pedar system. Synergy did not make and/or sell footbeds or orthotics. Instead, we checked the effect of footbeds on skier performance. We performed a quick footbed check for a minimal fee of $20 using the sophisticated Novel Pedar pressure analysis technology.

Synergy was one of the first companies in the world to use the Novel Pedar pressure analysis system synchronized to video to acquire data on skier performance and analyze the captured data.  The Synergy team with diverse expertise studied the effect of ski boots and custom insoles on skier performance and identified functional issues in the body that needed to be addressed. It was a common finding that custom footbeds were significantly compromising skier performance, especially the ability to create the necessary platform under the foot on which to stand and balance on the outside ski.

Synergy offered a comprehensive 5 Step Performance Program that started with a footbed check. A key component was item 2., the Biomechanical Check.

With increasing recognition of the negative effect of most footwear on the user and criticism of the unproven claims made for footbeds and orthotics coming hard and fast, credibility in skiing is rapidly going downhill. It is time for proponents of custom insoles for ski boots to support their claims with solid evidence, especially evidence supported with data acquired during actual ski maneuvers. The technology to do this has existed since at least the year 2000.



In my last post, I erroneously stated that the sole turns inward, towards the center of the body, in eversion. I meant to state that the sole turns outward, away from the center of the body, in eversion.

I have revised the paragraph in my post so it reads correctly.

In order for the torso and Center of Mass to stack vertically over the ball of the foot, the sole of the foot must turn outward, away from the center the the body. This is called eversion. It is enabled by the joint that lies below the ankle called the sub-talar joint. The sub-talar joint is tied to the tibia where it acts as a torque converter. When the foot everts or inverts, the sub-talar joint translates this on an approximately 1:1 ratio into internal or external vertical axial rotation of the leg.

I apologize for any confusion this may have caused.


The intent of my last post was to create an awareness of the lower limb alignment indicative of stability and how a lack of stability, whether intrinsic or caused by footwear, especially ski boots, will cause a skier to default to the use of knee angulation in what will be a failed attempt to hold the edge of the outside ski.

A skier will be unable to develop the requisite biomechanics to balance on their outside ski if they lack stability in barefoot monopedal stance under the minimal challenges associated with a flat, level unperturbed surface. If they lack lower limb/pelvic stability, there could endless combinations of causes which is why I listed a number of resources to help address this deficiency.

If a skier/racer exhibits good to excellent  stability under this basic test and they become unstable with the addition of any form of footwear, it suggests, but does not unequivocally prove, that the footwear is the cause. In more 4 decades of working with skiers and racers at all levels, I have consistently found that I can turn monopedal stability off and on at will. That I can do this without limitation, is indicative of cause and effect. In the 2 world class racers I am presently working with, even a small change in a liner or the over-tensioning of a shaft buckle or power strap has an immediate and noticeable effect on outside limb/pelvic stability and balance.

A key exercise I like to use with racers and elite skies I am working with is the vertical stacking exercise shown in the graphic below. This exercise is performed by starting from bipedal stance with the feet stacked under the heads of the femurs and the head and torso vertical and then making fluid arcing movement of the COM over the ball of the big toe while keeping the torso and head stacked vertically and the pelvis and shoulders horizontal as indicated by orange vertical and horizontal references in the graphic below. The torso should be aligned with the transverse or frontal plane, square with the foot.

A lack of stability in the biokinetic chain is typically evidenced by a drop of the opposite side of the pelvis and a leaning in the opposite direction of the torso and/or the head or both. While this reduces the load on the pelvis side of the  leg it creates a myriad of issues. Inside hip drop will cause the inside leg of a turn to assume the load as the skier inclines thus creating further instability on the outside leg.

Elite skiers and racers like Shiffrin are able to get over it (find stability on their outside foot and ski) in milliseconds. This enables them to retract the inside foot and ski with knee flexion as they incline into a turn similar to the mechanics cyclists use when they corner; outside leg extends, inside leg retracts.

The vertical stacking exercise is best performed in front of a mirror.


A widespread perception appears to exist within the skiing community is that the ability to hold a ski on edge by using the leg to exert force against the side of the stiff shaft of a ski boot and staying upright and not falling, equates with good balance. This ingrained perception presents a challenge in terms of communicating how the world’s best skiers create a platform under the body of the outside ski that they can stand and balance on using the same processes that we all use to stand and balance on a hard, flat level surface.

Last ski season, I developed simple cue to help skiers find the right mechanics and biomechanics as the new outside ski goes flat between edge change and then rolls into the turn on its new inside edge.  At ski flat, if a skier has the right stance, they should feel strong pressure under the ball and the big toe. As the skier extends and inclines into the new turn, the outside leg should be rotated into the turn to point the big toe in the direction of the turn. Hence the cue, press and point the big toe.  This pressure under the ball of the foot and big toe should be maintained through the turn phase until it is released by the transfer or weight to the inside (uphill) ski at the start of the transition to the inside. The strong pressure under the ball of the foot and the force that presses the big toe down flat is passively created by a strong stance, not conscious effort.

The Reverse Windlass

The pressure under the big toe is created by what is called the Reverse Windlass Mechanism. This naturally happens in the late phase of stance when walking barefoot. But wearing shoes with raised heels and cushioned insoles makes it impossible for the Reverse Windlass to function. When the Reverse Windlass is lost, it must be re-acquired by being barefoot as much as possible and walking, running and training in zero drop, thin soled minimal shoes. In some cases, people have to learn to walk naturally by rehearsing the action.

There is an excellent YouTube video by Teodoro Vazquez on Blog del Runner  called Windlass Mechanism and Running Biomechanics – Vazquez describes the 3 phases of the windlass mechanism, Active (Activo), Reverse (Inverso)  and Passive (Pasivo). Although the video is directed at running, the primary concepts have direct application to skiing and ski technique. The reverse windlass is activated by the weight as shown in the graphic below from Vazquez’s YouTube video.
 This tensions the arch of the foot and presses the big toe down.
As the shank angle increases, the soleus muscle goes into isometric contraction and arrests further shank movement. The results in a heel to forefoot rocker action that dramatically increases the down force under the ball of the foot and the big toe. What I call the Spinal Reflex or SR Stance maximizes the down forces.

It is important that when the big toe (aka Hallux) is pressed down flat, the ball of the foot and big toe feel like one. When the big toe is pressed down properly, you should feel your glutes tighten. The leg you are standing on should be straight and the knee pointed straight ahead.

An important muscle in the Reverse Windlass is the Flexor Hallucis Longis or FHL. When the soleus goes into isometric contraction, the FHL is tensioned. This stabilizes the foot and knee by rotating them away from the center line of the body.

Things that prevent the Reverse Windlass

1. A condition called Hallux (big toe) Valgus
2. Narrow shoes and especially shoes with a pointed toe box.
3. Ski boots, especially ski boot liners.
4. Shoes with elevated heels, cushioning and toe spring (toes raised up). Note: A small amount of ramp angle is necessary for the SR Stance.
5. Footbeds and Insoles.
In my next post, I will discuss fixes to enable and/or restore the Reverse Windlass.


Biohacking Your Body with Barefoot Science

“…… hacking” or finding a way to more efficiently manipulate human biology.  This can include areas of sleep, nutrition, mental health, strength, recovery. (1)
– Dr. Emily Splichal – Evidence Based Fitness Academy


Last ski season, I developed some simple cues or hacks to help skiers and racers quickly find the body position and joint angles required to create the pressure under the outside foot with which to impulse load the outside ski and establish a platform on which to stand and balance on through the turn phase –  THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: IMPULSE LOADING

The primary source of information that helped me develop these cues are the exercises developed by Dr. Emily Splichal. Her exercises also helped me to appreciate the extent to which traditional supportive footwear with raised heels and cushioned soles has damaged my feet and deadened the small nerves responsible for maintaining upright balance and the ability to initiate precise movement. Since implementing Dr. Splichal’s evidence based science, I am not only skiing at a level beyond what I considered possible, I am starting to walk naturally for the first time in my life.

The information contained in Dr. Splichal’s videos will challenge everything you know or thought you knew about what we have been conditioned to believe about our feet and the footwear we encase them in. Contrary to what we have been told, cushioning under the feet does not reduce impact forces on the lower limbs and protect them. Instead, it actually increases impact forces while slowing what Dr. Splichal refers to as the time to stabilization; the time required to stabilize, stiffen and maximally protect the joints of lower limb from impact damage – THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE

The Best Surfaces to Train On

A good place to start is to learn which surfaces are best to train on. Again, while it may seem logical and intuitive that surfaces with cushioning are best because they will protect the body from shocks, studies show the exact opposite to be true. Over time, support and cushioning in shoes can diminish the sensitivity of the rich small nerve matrix in the feet that acts as a neural mapping system for balance and movement. In her YouTube video, Best Surfaces to Train On (, Dr. Splichal discusses the effects of different surfaces on plantar small nerve proprioception and explains how barefoot training is a form of small nerve proprioceptive training designed to activate the plantar foot. Balance training is best done barefoot.

The Power of Plantar Proprioceptors

Watching Dr, Splichal’s webinar presentation Understanding Surface Science: The Power of Plantar Proprioceptors – will further your appreciation of the power of plantar proprioception.

First Stance Hack – Plantar Foot Release for Optimal Foot Function

Dr. Splichal’s 6 Minute Plantar Foot Release for Optimal Foot Function – will dramatically improve foot function.
Dr Splichal explains how to use RAD rollers (golf ball or other firm balls will also work) to optimize foot function by releasing tissues in the plantar foot by applying pressure to the 6 areas shown in the graphic below.
Dr. Splichal advises to focus on using a pin and hold technique  (not rolling the foot on the balls) to apply pressure to these 6 spots on each foot holding for about 20 seconds on each spot with each of the three different sized rounds for a total time of about 6 minutes. The foot release should be done 2 times and day and prior to each training session.
In my next post I will talk about the second Stance Hack: Pressing Down on the Big Toe to Impulse Load the Ski and Power the Turn



With ski season coming to an end in many parts of the world, I am going to start posting on what I have learned over the past ski season and changes that can be made to components such as the boot board (aka Zeppa) to improve performance and why how these changes work. I am also going to post on the implications on skiing of recent studies as well as the application and impact of technologies such as CARV and Notch. If these products become available soon enough, I plan to some testing before next ski season so I can write posts on how these technologies can be used to improve ski technique and technical analysis as well as identify problems caused by ski boots.

For the time being, I have decided to hold off on discussing the rocker impulse loading mechanism of the mechanics of balance on the outside ski because limitations imposed by the ski boot prevent the majority of skiers from generating the high transient impulse load within the 2 millisecond window that occurs during roll over through ski flat during edge change (see THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE) that is required to engage the mechanism that enables a skier to balance on the outside ski.

For academics, researchers and others with an interest in the science aspect of the design of ski equipment and the formulation of ski technique, I will be posting studies that have application to both.


In this post, I am going to discuss why the optimal stance for skiing is dependent on the loading sequence of the new outside foot of turn, how this must start in the transition phase and why it is critical to the rocker impulse loading mechanism that engages the shovel and inside edge of the outside ski at edge change. This issue was introduced in THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE. The rocker impulse loading mechanism and the ability to balance on and control the outside ski is dependent on the ability to rapidly tension the biokinetic chain that stiffens the forefoot and torsionally stiffens the ankle and knee joints. This process enables top down, whole leg rotational force, into the turn, to be effectively applied to the foot and ski from the pelvis.

A Middle Ground on Stance

Although there is much discussion in skiing on the subject of stance, it is rare for discussions to include, let alone focus on, the foot.

The red rectangle in the graphic below shows the mid stance phase in the 8 component Gait Cycle.

A common position amongst the various authorities in skiing on stance, is that it is represented by the mid stance phase of the Gait Cycle. The 8 component Gait Cycle is the universal standard for discussion and analysis of gait in human movement. During the turn phase, the sole the outside foot or stance foot is in substantially constant contact with the zeppa or boot board. Since the ski stance does not involve initial heel contact or terminal phases, it was reasonable to conclude that skiing must be a mid stance activity.

Assuming that stance skiing is a mid stance activity also meant that the joints of the foot are mobile and the foot is still pronating and dissipating the shock of impact. The fact that the foot is not yet fully tensioned in mid stance, while still pronating, appears to have led to the conclusion that the foot is unstable and in need of support. Towards this end, form fitting footbeds, liners and, more recently, form-fitted shells were introduced and soon became standard. I described what has become known as the Holy Grail of skiing; a perfect fit of the boot with the foot and leg; one that completely immobilizes the joints of the foot in my post, A CINDERELLA STORY: THE ‘MYTH’ OF THE PERFECT FIT.  This objective, precipitated the premise that forces are best applied to the ski using the shaft of the ski boot as a handle with the leg acting as a lever. In this paradigm, the foot was relegated to a useless appendage.

The Missing Ninth Component – Late Stance

The problem with the assumption that mid stance is the defacto ski stance is that it has only recently been suggested that a critical ninth component, Late Stance, is missing from 8 components of the Gait Cycle.

Although it has been known for decades that the foot undergoes a sequential loading/tensioning process that transforms it from what has been described at initial contact as a loose sack of bones, into a rigid lever in terminal stance for propulsion, the effect of fascial tensioning on late stance has remained largely unexplored until recently when the exclusive focus on the rearfoot began to shift to the forefoot. I discuss this in BOOT-FITTING 101: THE ESSENTIALS – SHELL FIT.

As recently as 2004, Achilles/PA loading of the forefoot was poorly understood. Under Background, a 2004 study (2.) on the role of the plantar aponeurosis in transferring Achilles tendon loads to the forefoot states:

The plantar aponeurosis is known to be a major contributor to arch support, but its role in transferring Achilles tendon loads to the forefoot remains poorly understood.

The study found:

  • Plantar aponeurosis forces gradually increased during stance and peaked in late stance.
  • There was a good correlation between plantar aponeurosis tension and Achilles tendon force.
  • The plantar aponeurosis transmits large forces between the hindfoot and forefoot during the stance phase of gait.
  • The varying pattern of plantar aponeurosis force and its relationship to Achilles tendon force demonstrates the importance of analyzing the function of the plantar aponeurosis throughout the stance phase of the gait cycle rather than in a static standing position.

Changes in Muscle-tendon unit (MTU) and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion. These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient foot to ground force transmission.

Transmits large forces and foot to ground force transmission means large downward forces directed at the ground or to a ski and from there to the snow.

Although I did not understand the esoteric details of fascial tensioning back in 1993, I was sufficiently aware of the relationship between peak tension in the plantar aponeurosis (PA), to be able to construct a simple model that illustrates how peak PA tension results in peak Achilles tension and how this causes the soleus muscle to go into isometric contraction, arresting further forward movement of the shank. I discuss this in detail in my series of posts on the SR Stance.

The photos below shows the simple model I made in 1993. Simple models of this nature are finding increasing use today to model what are called Anatomy Trains.

In late stance, the foot gets shorter in length and the arch gets higher and tighter as intrinsic tension transforms the foot from a mobile adapter in early stance into a rigid lever in late stance so it can apply the high force to the ground necessary for propulsion in the terminal stance phase that occurs at heel separation. The graphic below shows how the arch height h to foot length L ratio increases as the foot is getting shorter and the arch gets higher in late stance.

What has only recently being recognized is that the fascial tension that occurs in stance maximizes balance responses, neuromuscular efficiency and protection of the lower limbs through a process of  foot to core sequencing; one that stiffens the forefoot and torsionally stiffens the joints of the ankle and knee.

Loading/Fascial Tensioning Speed

A 2010 study (4.) found:

Early-stance tension in the PA increased with speed, whereas maximum tension during late stance did not seem to be significantly affected by walking speed. Although, on the one hand, these results give evidence for the existence of a pre-heel-strike, speed-dependent, arch-stiffening mechanism, on the other hand they suggest that augmentation of arch height in late stance is enhanced by higher forces exerted by the intrinsic muscles on the plantar aspect of the foot when walking at faster speeds.

…… or, by more rapid, forceful impulse loading at ski flat – see SUPER PETRA VLHOVA’S EXPLOSIVE IMPULSE LOADING IN ASPEN SLALOM

A 2013 study (3.) found:

Although often showing minimal activity in simple stance, the intrinsic foot muscles are more strongly recruited when additional loads are added to the participant.

A 2015 study (5.) found:

Changes in Muscle-tendon unit (MTU) and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion.

These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient (vertical) foot to ground force transmission.

…….. or foot to ski to snow force transmission.

The Optimal Ski Stance is Unique

While the optimal stance for skiing has the greatest similarity to the late phase of stance, I am not aware of any stance that has requirements similar to the ski the stance where a specific loading sequence precedes rocker impulse loading as the outside ski changes edges in the top of a turn.

As with the gait cycle, the movement pattern associated with a turn cycle also involves loading and swing phases.

Time To Cascade

There are two intertwined rocker mechanisms that impulse load the forefoot at ski flat between edge change. These rocker mechanisms rely on what the 3 components of what I refer to as the Time To Cascade which is only possible when the plantar aponeurosis is rapidly fascially tensioned.

  1. Time to Fascial Tension which affects,
  2. Time to Stabilization which affects
  3. Time to Protection which protects the lower limbs 

In my next post, we will Meet the Rockers and continue with the discussion of the mechanics of balance on the outside ski.

  2. Dynamic loading of the plantar aponeurosis in walking –Erdemir A1, Hamel AJFauth ARPiazza SJSharkey NA. J Bone Joint Surg Am. 2004 Mar;86-A(3):546-52.
  3. Dynamics of longitudinal arch support in relation to walking speed: contribution of the plantar aponeurosis – Paolo Caravaggi, Todd Pataky, Michael Gu¨ nther, Russell Savage and Robin Crompton – Human Anatomy and Cell Biology, School of Biomedical Sciences, University of Liverpool, Liverpool, UK – J. Anat. (2010) 217, pp254–261
  4. The foot core system: a new paradigm for understanding intrinsic foot muscle function – Patrick O McKeon1Jay Hertel2Dennis Bramble3Irene Davis4 Br J Sports Med doi:10.1136/bjsports-2013-092690
  5. Active regulation of longitudinal arch compression and recoil during walking and running Kelly LA, Lichtwark G, Cresswell AG – J R Soc Interface. 2015 Jan 6;12(102):20141076.