ankle joint


A recently published study on foot pressure data acquired during skiing (1.) recognized that compressive force pressure data acquired in skiing is underestimated by 21% to 54% compared to pressure data acquired on a force platform in a controlled environment.  The underestimation varies depending on the phase of the turn, the skier’s skill level, the pitch of the slope and the skiing mode. The paper states that other studies have stated that this underestimation originates from a significant part of the force actually being transferred through the ski boot’s cuff (to the ski). As a result, the CoP trajectory also tends to be underestimated along both the anterior-posterior (A-P) and medial-lateral (M-L) axes compared to force platforms.

In conclusion, these studies have highlighted a major contribution of different factors to the nGRF applied throughout a turn, such as the foot’s position during a turn (inside vs. outside), the CoP A-P (front to back) displacement, or precise loading of different foot sole regions.  Unfortunately, these results have been studied separately.

There is a lack of continuity across the various positions in skiing and, in particular, a lack of a model with which to explain mechanisms such as balance on the outside ski and open and closed chain internal rotation of the leg and foot in conjunction with progressive inclination and G force loading on it as the skier crosses the fall line in the bottom of a turn. The associated mechanics and biomechanics represent a new paradigm requiring new thinking and new insights. Existing text-book explanations are not sufficient to explain these mechanisms.

Open Chain Whole Leg Rotation vs. Closed Chain Rotation

Rotation of an unloaded (non-weight bearing) lower limb is relatively straight forward when there is a small angle at the knee. As resistance to rotation of the foot is progressively introduced with increasing weight imposed on it, the kinetic chain begins to close. As it closes, the points at which the foot transfers torque to the walls of rigid shell footwear such as ice skates and ski boots starts to emerge as an issue as does the loading of the foot created by the weight of the body imposed on it and the position of COM in relation to the foot.

In order to tension the biokinetic chain and trigger the two-phase Second Rocker, COM must be aligned over the foot as shown in the grahic below.  This alignment requires that the leg adduct (move towards the center of the body) approximately 6.5 degrees. To bring the 3 points of the tripod of the foot into contact with the ground, the foot must evert (sole turn outward) the same amount. Eversion is accompanied by a corresponding torque coupled 6.5 degrees of internal rotation of the leg as shown in the left hand figure in the graphic below (see my post – OUTSIDE SKI BALANCE BASICS: STEP-BY-STEP). The bipedal figure on the right shows adduction, eversion and internal rotation as 0.0 – 0.0 – 0.0 for reference. The monopedal figure on the left shows the changes in adduction, eversion and internal rotation as 6.5 – 6.5 – 6.5.


The alignment of COM with the foot can be achieved by moving COM laterally as shown by the arrow emanating from COM in the Monopedal figure or by moving the foot medially as shown by the white arrow or through a combination of the two movements.  The act of positioning COM over the outside foot (Getting Over It), sets in motion internal rotation of the outside leg and eversion of foot into the turn. This engages an over-centre mechanism between the platform of the ski and the inside edge underfoot.

The over-centre mechanism results in an alignment of the resultant force R forming an angle with the transverse aspect of base of the ski that is slightly less than 90 degrees. In order to Get (COM) Over It (the foot), it is essential that the outside leg is not only able to adduct and rotate internally as the foot everts, but to achieve this configuration without delay in order to set up the over-center mechanism. The problem for the majority of skiers is that the objective of most boot fit systems and boot-fitting procedures is to support the foot in a neutral configuration. Eversion of the foot is a component of pronation. Impeding or preventing pronation, restricts or even prevents the required amount of eversion.

Closing the Kinetic Chain on Whole Leg Rotation

Open kinetic chain leg/foot rotation with the foot unloaded (not bearing weight) is relatively simple. But the mechanics and biomechanics begin to get complicated when resistance is progressively introduced that starts to close the kinetic chain as happens when the outside ski is rotated across the path of the skier in the fall line in the bottom of a turn.
The graphic below shows a foot supported on a platform with 2 points of resistance (FR) applied to the platform opposite the 2 points of application of the moments of force, ML (green) and MM (red). The forces tangent to the arc of the moments of rotation are shown as FT.
When the weight of the body is progressively shifted to one foot (i.e. Monopedal Stance) and the foot everts, the talus (shown in gray in the graphic above) moves inward towards the center of the body and shifts slightly rearward as evidenced by the corresponding movement of the inside ankle bone.  This is easily seen when moving from bipedal to monopedal stance on a hard, flat surface while barefoot.In order to effectively transfer torque from the foot to the platform, the forefoot and ankle and knee joints must be fascially tensioned. This requires that the big toe (Hallux) be aligned on the anatomical axis (dashed line) and the forefoot fully splayed. This stabilizes the heel and head of the 1st metatarsal (ball of the foot).  Torque from internal rotation of the leg will be transferred to two discrete points adjacent the Load Counters mounted on the resistance platform.

Removing the resistance force FR from the inner (big toe) aspect of the platform provides insights to what I refer to as the Turntable Effect that is associated with internal rotation of the leg and eversion of the foot that creates an over-center mechanism. The turntable rotation is shown in light yellow. The effect will vary for different structures of the foot depending on the location of the center of rotation of the platform under the foot.

The location of the blade of an ice skate on the anatomical center of the foot has been used to explain why it is easier to cut into a hard ice surface with a skate compared to the edges of a ski. But the real reason it is easier is because ice skaters use the Second Rocker, Over-Center, Turn Table Mechanisms as shown in the graphic below. The skate is positioned under COM. It can be readily seen that the skater is not using the inner aspect of the shaft of the skate to hold the skate on edge.

In my next post, I will discuss the progress of emerging CARV and NABOSO technologies after which I will continue with my discussion of the Mechanics of Balance on the Outside Ski.

  1. Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing: Published: May 4, 2017  – Thomas Falda-Buscaiot, Frédérique Hintzy, Patrice Rougier, Patrick Lacouture, Nicolas Coulmy


In this post, I am going to discuss the process I follow to assess what I call the essential foot to shell clearances. This is a 2-step process.

Step 1 – Establish the clearances between the structures of the foot and the inner wall of the boot shell required for the foot to function.

Step 2 – Establish the physical connections between discrete restraint force transfer areas of the foot and the inner walls of the boot shell required for the effective force transfer to the ski, for containment of the foot required to support the processes of balance and for the coupling of the foot to specific mechanical references in the boot shell related to the running surface of the ski.

As a prelude to discussing shell fit, it is necessary to point out that a major shift is occuring in the area of focus on the human foot.

Until recently, most discussions on the human foot have focussed almost exclusively on the rearfoot; the ankle complex, the tibial-talar and sub-talar joints, ankle dorsiflexion and plantarflexion, ankle mobility, inversion, eversion, etc. This limited focus has been at the expense of an appreciation and understanding of the role of the forefoot and the complex lever mechanism that enables the first MTP joint to apply large forces to the ground. A study (1) published in 2004 commented:

The plantar aponeurosis (plantar fascia) is known to be a major contributor to arch support, but its role in transferring Achilles tendon loads to the forefoot remains poorly understood.

 Fascia is a sheet or band of fibrous tissue such as lies deep to the skin or invests muscles or various body organs.

The most plausible reason why the role of the  plantar aponeurosis in transferring Achilles tendon loads to the forefoot is poorly understood is that it has not been given much attention until recently.  

The above cited study concluded:

Plantar aponeurosis forces gradually increased during stance and peaked in late stance.

The almost exclusive focus of attention on the rearfoot has led to assumptions about the function of the foot as a system which are only now being called into question and found to be erroneous or invalid. One result is the erroneous assumption that the arch of the human foot is weak and collapses under the weight of the body. This has spawned a lucrative market for custom made arch supports intended to provide what is perceived as needed support for the arch of the foot.

In boot-fitting, the process of fascial tensioning, in which the height of the arch decreases and the forefoot splays, has been misinterpreted as an indication of a collapsing (implied failure) of the arch due to its inability to support the weight of the superincumbent body during skiing maneuvers. This has led to an almost universal perception and acceptance in skiing of custom arch supports as essential foundations for the foot and the most important part of a ski boot.

The Fascial Tension/SR Stance Connection

Plantar aponeurosis forces peak in late stance in the process of fascial tensioning where they act to maximally stiffen the foot in preparation for the application of propulsive force to the ground. When fascial tensioning of the plantar aponeurosis peaks, forward rotation of the shank is arrested by isometric contraction of the Achilles tendon. This is the shank angle associated with the SR Stance.

Immobilize – Support – Stabilize

Discussions of foot function in the context of the foot to shell clearances necessary for foot function and especially fascial tensioning, tend to be obscured by a consistent, persistent narrative in the ski industry spanning decades that the foot should be supported, stabilized and immobilized in a ski boot. Foot splay, associated with fascial arch tensioning, is viewed as a bad thing. Efforts are made to prevent foot splay with arch supports and custom formed liners in order to the fit the foot in the smallest possible boot size in the name of optimizing support.

In the new paradigm that exists today, the foot is increasingly viewed in the context of a deeply-rooted structure. In the design and fabrication of footwear, attention is now being directed to the accommodation of the  fascial architecture  and the importance of fascial tensioning as it pertains to the science of the human lever mechanism of the foot.

Fascial Tensioning and the Human Foot Lever

Fascial tensioning is critical to the stiffening of the foot for effective force transmission and to foot to core sequencing.

The body perceives impact forces that tend to disturb equilibrium as vibrations. It damps vibration by creating fascial tension in the arches of the foot and the lower limb. Supporting the structures of the foot, especially the arch, diminishes both the degree and speed of fascial tensioning to the detriment of the processes of balance and the ability to protect the tissues of the lower limbs through the process of damping of impact forces.

Dr. Emily Splichal has an excellent webinar on The Science of the Human Lever – Internal Fascial Architecture of the Foot as it pertains to foot to core sequencing –

The DIN Standard is Not a Foot Standard

A major problem for the human foot in a ski boot is the DIN standard toe shape. DIN stands for ‘Deutsches Institut für Normung’ which means ‘German Institute of Standardization’.

The DIN toe shape creates a standard interface for bindings. In a strong, healthy foot, the big toe or hallux should be aligned straight ahead on the center axis of the boot/ski. But as an interface for the human foot, the DIN standard toe shape of a ski boot is the equivalent of a round hole for a wedge-shaped peg.

The graphic below shows a photograph of a foot overlaid over a photograph of the ski boot for the same foot. The outline of the wall of the boot is shown in red. Even though the length of the boot shell is greater than the length of the foot, the big toe will be bent inward by the wall of the shell using the one finger space behind the heel shell length check.


The Importance of Foot Splay

The progressive fascial tensioning that occurs as CoM advances over the foot transforms foot into a rigid lever that enables the plantar foot to apply force the ground or to a structure underneath the plantar foot such as a ski or skate blade. Forefoot splay is important to the stiffening of the forefoot required for effective plantar to ground force transfer.

Ski boot performance is typically equated with shell last width. Performance boots are classified as narrow. Such boots typically have lasts ranging from 96 mm to 99 mm. Narrow boots are claimed to provide superior sensitivity and quick response, implying superior control of the ski.

The outside bone-to-bone width shown in the photo below is not quite 109 mm. The boot shell has been expanded. The 2 red arrows show the 5th and 1st toe joints (metatarsophalangeal joint or MTP joint). A prime hot spot in less than adequate shell width in the forefoot, is the 5th MTP joint. Even a minimal liner will narrow the boot shell width by 3 to 4 mm.


Shell Check: Start Point 

I start with a skier standing in both boot shells with the insole in place from the liner then have them claw each foot forward in the shells using their toes until they can just feel the wall of the shell with the outside (medial) aspect of the big toe when they wiggle the toe up and down. If there is a finger space behind the heel, the shell is in the ball park.

A second check is made with the skier standing on one foot. Some allowance for the correct alignment of the big toe  can be made by grinding the inside of the shell where it is forcing the big toe inward. When fully weighted, a fascially tensioned forefoot will splay approximately 3 mm for a female and 5 mm for a male.  The ball shaped protrusion of the 5th MTP joint is typically almost directly below the toe buckle of a 4 – buckle boot.

Once a skier can stand on one foot in each shell with adequate space for normal foot splay, the rear foot can be checked for clearance. The usual sources of problems are the inside ankle bone (medial malleolus) and the navicular and/or the medial tarsal bone. A good way to locate the prime areas of contact is to apply a thick face cream or even toothpaste to the inside ankle bones then carefully insert the foot into the boot shell, stand on it to make contact with the shell, then carefully remove the foot. The cream will leave tell tale smears on the boot shell which can then be marked with a felt pen.

Getting Step 1 successfully completed can involve alternating back and forth between forefoot and rearfoot clearance. Until, both areas are right, full normal foot splay may not occur. Step 2 is done in conjunction with liner modifications which can be a process in itself and is often the most problematic aspect of creating an environment in a ski boot that accommodates and supports foot function especially fascial tensioning.

  1. Dynamic loading of the plantar aponeurosis in walking – Erdemir A1, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA  – J Bone Joint Surg Am. 2004 Mar;86-A(3):546-52.


The lack of proper technique seem so often is not due to a lack of ability, but to an unsatisfactory functional configuration of the shaft in so many ski boots.

–  Sports Medical Criteria of the Alpine Ski Boot – W Hauser P. Schaff, Technical Surveillance Association, Munich, West Germany – The Shoe in Sport (1989) – published in German in 1987 as Der Schuh Im Sport – ISNB 0-8151-7814-X

In a conventional ski boot, the rear aspect and sides of the shaft are fixed in relation to the shell lower with the result that the angle of the rear spine of the shaft is fixed. The leading edges on either side of the shaft, overlap at the forward aspect where they are drawn together by closure means. In this configuration, the angle of the shank of a user is dependent on the degree with which the closures draw the uppermost forward aspect of the leading edges of the shaft towards each other, and towards the rear spine, in proportion to the amount of overlap created by the operation of the closure mechanism.

The graphic below shows two photos of a right ski boot shell. In the left photo, the shaft buckles are operated to the minimal closure position. In the right photo, the shaft buckles are operated to the maximal closure position. A red reference line at the rear spine indicates the fixed shaft angle. A red reference line at the front aspect of the shaft overlap indicates the variable aspect of the shaft angle is it pertains to the shank angle of the user. An arbitrary reference center with which to gauge the variance in the shank angle is shown in black. The reference shank angle in the maximal closure position (right boot) is 8 degrees less than the reference shank angle in the minimal closure position (left boot). In terms of angles of ankle flexion, the ankle of the same foot and leg in the boot shell in the right photo would be 8 degrees plantarflexed when compared to the ankle of the same foot and leg in boot shell in the left photo.

Shank difference

The implications of this arrangement are that the shank angle of the user will change in response to changes in the operation of the closures of the shaft, especially changes in the top shaft closure and/or the amount of tension in the power strap, if equipped with one. For the most part, racers are unaware of the critical nature of the correct shank angle. They have erroneously assumed, or have been taught, that a securely tightened shaft is essential for good control of the ski. The tighter the shaft is secured to the leg, the better the control. As shown in the photo below, boot makers provide shaft buckles with high leverage features that facilitate a secure closure of the shaft with the leg. Closing the boot shaft beyond the shank reference angle can have serious implications for balance and control of the ski.

Leverage boost

The angle of the shank of the user is dependent on the degree of overlap of the leading edges of the shaft, including the tension of any power strap. The cross-sectional area of the leg of the user at the boot top, in particular, the front to back dimension of the cross-sectional area, is also a factor that affects the correct angle of the shank.

The two photos below compare the shaft angle of a stock boot shell to the shaft angle of a boot shell that has been modified to reduce the shaft angle by 8 degrees in order to correct for excessive shank angle.

8 degree difference

Operating the closure mechanism of a shaft beyond a certain point creates another problem, as shown in the photo below, deformation of the interfaces of the overlap elements of the shaft.

Overlap deformation

The angle of the shank of a racer is critical. It must be maintained within a narrow range for optimal performance. Anything that has the potential to alter an optimal shank ankle should be carefully evaluated.

Related post: GETTING SHAFTED BY THE (SKI BOOT) SHAFT -…ski-boot-shaft/




The first thing I look for in a ski boot I am considering is a shaft with sufficient stiffness to create a defined oval shape that will accommodate 14-15 degrees of lead segment low resistance ankle flexion before firm contact of my shank with the front of the shaft occurs. Because my shank is free to move fore and aft up to 14-15 degrees within the shaft, I tend to be acutely aware of what the tongue is doing on my shin. This is much harder to sense in boots with flexible shaft overlap segments that won’t assume a defined shape and especially in a boot with the shaft buckles and power strap cinched tight. When I took my Head World Cup boots out of the box and put them on I immediately sensed the tongue pressing firmly against the base of my shank. This was before I even tried to dorsiflex my ankle (rotate my shank forward). The curve of the transition of the tongue felt like a block pushing against the base of my shank.

Most plastic tongues amount to bent half tubes. One of the stiffest shapes known is a tube. When the trailing edges of a ski boot tongue are loaded by the leading edges of the boot liner and the curved interface of the boot shaft, the shank portion of the tongue becomes substantially rigid. When the shank presses against the tongue it bends at its transition with the forefoot portion. When it bends, the curve at the transition flattens and the tongue body moves rearward towards the shank. Unless the tongue is sewn to the toe box of the liner so it is too far forward, it can press on the lower end of the shank and block the glide path of the ankle joint. Here is a simulation of what happens. The black line represents the profile of the tongue.


This issue was identified in my US No. 4,534,122 and in a series of X-ray video studies done by Professor M. Pfeiffer (Kinematics of the Foot in the Ski Boot – The Shoe in Sport).  In the Type C study Dr. Pfeiffer observed that, among other things, the physiologic function of the ankle is stopped prematurely (blocked) with the effect that the talus (the bone that forms the ankle joint with the tibia) is levered backward and upward within the boot shell. The previous short video clip and the clip that follows below show this effect. If you pause the videos before and after shank loading you can see the extent of the effect of the tongue bending at the transition and pressing against the base of the shank. The flattening effect at the transition is due to the manner in which the stiffness of the half tube shape of the tongue influences the deformation.


Note how the foot is forced backward in the boot and the entire forefoot lifts off the boot board. This effect is easy to demonstrate with foot pressure technology by having the subject apply firm pressure to the balls of the feet and then flex the boot. As boot flex progresses, the pressure seen on the monitor under the balls of the feet will progressively decrease then disappear. The reason for this is that ski boots are flexed by decreasing the contraction of the soleus muscle. This has the effect of turning off the connection of the tibia with the balls of the feet. In his article, Dr. Pfeiffer stresses the importance of the forces on the shank in the fore aft plane being the result of active muscle participation and tonic muscular tension and that if muscular function is inhibited in the ankle area, greater loads will be placed on the knee. Tonus in a muscle is a reflex state where the muscle is primed and ready to rapidly respond to a neural signal to contract.

In my next post I will discuss the modifications I make to my boot tongue to try and minimize ankle glide path block.




This post is about how tongues in ski boot can affect balance.

Every ski boot has some sort of tongue. In the case of rear entry boots or liners like the Intuition, a portion of the liner acts in the capacity of a tongue. So what exactly does the tongue do? The obvious job of the tongue is to the pad the shin and spread the load applied by the shank to the front of the boot shaft.

What about the forefoot portion of the tongue over the instep of the foot? What does it do? As far as I have been able to ascertain, for most skiers, not much. Seriogram X-Ray studies done for me in 1995 found that in the boots of some skiers, there was a significant crash space between the top of the forefoot portion of the tongue and the inner surface of the boot shell. A lack of constraint or load applied to the instep of the foot of a skier means that the entire foot can float within the boot shell in response to perturbations in snow reaction force. Typically, when a skier’s CoM is perturbed, the plantar foot separates from the insole on the liner. If the skier is thrown off balance and pitches forward, the heel of the foot moves up as the foot rotates about the balls of the foot. This is an issue that the in-boot technology in my US Patent No. 4,534,122 addressed.

But ski boot tongues can do other things that you may not be aware of. The tongue can act in the capacity of a spring that opposes and progressively loads the shank in ankle flexion. Worse, it can  obstruct the glide path of the ankle joint. When the now ubiquitous power strap that is present on most boots today is cinched up tight, the tongue can act as an effective splint for the ankle.

In my last post, MOMENT OF THE SHANK IN THE SHAFT,  I used a simulation to show how my shank can move with little resistance from the shaft for about 14-16 degrees within the front to back free space within the shaft. In his article, Kinematics of the foot in the ski boot, Dr. M. Pfeiffer refers to this as the lead segment of shank flexion. Here is what it looks like in my Head World Cup ski boot.

Lead segment

The red line emanating from the fixation of the shaft of the boot indicates the proximate point about which deformation of the front of the cuff will occur. As my shank encounters the front of the shaft I want the load centre to remain substantially fixed and the resistance to predictably increase so my balance system can work with it.

The load applied by my shank is to the top edge of the front of the shaft of the boot. This is the centre of the load. The load is distributed by the tongue above and below the load centre. I like to have a little more load on my shank below the load center than above the load centre. The red arrows and bar with the dots in the photos below show this. I don’t want to have any load on my shank below the lower aspect of the load distribution.

C of Force

Here is what the stock tongue from my boots looked like after I performed a tonguectomy procedure that removed it from the liner.

Tongue section

Here is what the tongue looks like overlaid on my ski boot.

Tongue overlaid

Note the flat profile. In order for the tongue to conform to my foot and leg either my ankle has to severely plantarflex or my the tongue has to bend. I suspect that tongue is made this way to act as a sort of shank-shaft  shoehorn to facilitate entry of the foot into the boot. Since I can’t stand up let alone ski with my ankle plantarflexed, the tongue has to bend. By what? By my shank applying a force to it. In this configuration the tongue is acting like a spring pushing against the shank of my leg in places where I don’t want any load.


I push on the tongue, the tongue pushes back. But it can be worse than that especially if the tongue is too far back as it was in my boots. The tongue is fixed (usually sewn) to the toe box of the liner. The first time I put my boots on (the liners were intact then) and operated the buckles it felt like a steel rod was jammed into the base of my shank. If I tried to flex my ankle I could feel that the glide path of the joint was impeded. So I would get an initial load on my shank at its base followed by a secondary load at the top of the shaft superimposed over the first load. To me, the feeling is like running up a flight of stairs and catching the toe of my lead foot on a stair nosing. I call this kind of unpredictable loading the ‘trip effect’ because it feels similar to tripping in terms of the effect on my balance.

In my next post I will discuss the tongue modifications I typically make.



In order to appreciate how and why I fabricate a tongue system that works with my minimal shell, a requisite knowledge of the key aspects of the underlying issues and fundamentals of the science of human balance are essential.

By 1979, through a series of experiments, I had arrived at a tentative conclusion that the concept of attempting to immobilize the joints of the foot and support it within the confines of a rigid shell ski boot was unsound and not conducive to physiologic function. One of the issues that I had identified was the incompatibility of the fixed plane of the front of the shaft (aka the cuff) of the ski boot with the dynamic plane of the front of the shin or shank of the skier’s leg. There was also the issue of inadequate or even the absence of loading of the instep of the foot within the forefoot portion of the ski boot shell. It is one thing to arrive at a conclusion that a concept is flawed. But unless one can come up with a better solution, a tentative conclusion is moot.

In the spring of 1980 I came up with a solution that addressed both issues. It was an innovative, in-boot technology that was granted US Patent No 4,534,122.  The effect of this technology on Podborski’s skiing far exceeded any expectations I held. Although it appears I was first out of the gate in recognizing problems associated with the ski boot shaft, it was soon to turn out that I was not alone in identifying this issue. Here is what I said in my patent filed on December 1, 1983, granted on August 13, 1985 and assigned to Macpod Enterprises Ltd. (Squamish) MACPOD was David MACPhail and Steve PODborski.

Designers of ski boots intended for downhill (alpine) skiing have recognized the need to provide support for the leg, ankle and foot, but have tended to produce boots that are uncomfortable, that do not give the skier proper control, and that restrict those movements of the ankle joint that are necessary during skiing.

Fore and aft movements of the leg at the ankle joint (i.e. plantarflexion and dorsiflexion of the foot) are often restricted or prevented in prior art ski boot by the boot tongue or other structure designed to restrain movements of the foot. Typically, a boot tongue extends from near the toes to the lower shin and, in order to provide good padding and support, is relatively inflexible. Such a tongue presents considerable resistance to dorsiflexion of the foot.”

It is important to note that at the time that the patent was filed I was still in the paradigm of immobilizing the foot and the use of supportive footbeds.

Four years after the filing of the patent my position on the shaft of boot interfering with the physiologic function of the ankle joint was confirmed in four articles contained in the section, The Ski Boot, in the book, The Shoe in Sport (1989) – Published in Germany in 1987 as Der Schuh im Sport. ISNB 0-8151-7814-X (27 years ago). It appeared that as a Canadian I had laid down a gauntlet on issues with the shaft of the ski boot and, in so doing, had led the world in drawing attention to this issue. The response from boot makers? Deafening silence.

In the first article, Biomechanical Considerations of the Ski Boot (Alpine), Dr. E. Stussi,  Member of GOTS – Chief of Biomechanical Laboratory ETH, Zurich, Switzerland, explains that the ski boot must represent an interface between the human body and the ski and that more than simply enabling the skier to steer the ski as well as possible, the boot must also allow direct (neural) feedback from the ski and from the ground (snow) to the skier. In other words, in order to function in a rapidly changing dynamic environment, the balance system must have access to accurate neural feedback from the snow in order to generate what are called postural responses (ergo – balancing processes). Dr. Stussi states, These conditions can be met if the height, stiffness, angle  and functions (rotational axes, ankle joint (AJ)/shaft) of the shaft are adapted, as well as possible  to the individual skier (my emphasis added). Dr. Stussi warns of the problems associated with the loading of the ankle such as occurs when a boot is tightly fit in what is often referred to as ‘The Holy Grail of skiing; the perfect fit of the boot with the foot and leg,, Improvements in the load acting on the ankle make it biomechanically very likely that the problems arising in the rather delicate knee joint will increase.” Dr. Stussi seems to have called this right. Knee injuries did increase. But the loading of the ankle not only continues unabated today, the state-of-the-art in ankle loading continues to evolve.

In the second article, Kinematics of the Foot in the Ski Boot, Professor  Dr. M. Pfeiffer of the Institute for the Athletic Sciences at University of Salzburg, Salzburg, Austria, presents the results of a number studies using  x-ray video tape imaging on the effects of the shaft of the boot on the shape of the foot and the displacement of bones towards and away from each other during flexion of the ankle. These changes disrupt the normal physiologic function of the ankle necessary for balance. Based on these studies Dr. Pfeiffer concludes, “The shaft of the boot should provide the leg with good support, but not with great resistance for about two thirds of the possible arc, i.e., (12 degrees) 20 to 22 degrees. Up to that point, the normal, physiologic function of the ankle should not be impeded.” The response of the ski industry? Power straps to further impede the normal physiologic function of the ankle, the very thing Dr. Pfeiffer warned against.

Dr. Pfeiffer points out that it is misconception that the role that the role of the shaft is to absorb energy and that this misconception must be replaced with the realization that, shaft pressure generates impulses affecting the motion patterns of the upper body, which in turn profoundly affect acceleration and balance. He advises that the lateral stability of the leg should result from active muscle participation and tonic muscular tension and that if muscle function is inhibited in the ankle area (which is the seat of balance – my comment added), greater loads will be placed on the knee (my emphasis added).

Dr. Pfeiffer concludes his article by stating that “the ski boot and it’s shaft must be adapted to the technical skill of the skier, and the technical skills of the skier must be adapted to the preexisting biomechanical functions of the leg and the foot.” Dr. Pfeiffer ends by expressing the hope that his studies will lead to the development of a ski boot design based on anatomical principles. It seems that Dr. Pfeiffer’s hope was in vain.

In the third article, Ski-Specific Injuries and Overload Problems – Orthopedic Design of the Ski Boot –  Dr. med. H.W. Bar, Orthopedics-Sportsmedicine, member of GOTS, Murnau, West Germany mentions that Dr. Pfeiffer’s studies have found that the foot maintains some spontaneous mobility in the ski boot and that because of this, the total immobilization by foam injection or compression by tight buckles are unphysiologic“. Translation? Tightly fitting and compressing the foot especially with foam injected or form fit liners screws up the function of the foot. This is not a good thing. Along this line Dr. Bar goes on to state, Only in the case of major congenital or post traumatic deformities should foam injection with elastic plastic materials be used to provide a satisfactory fixation of the foot in the boot.” Based on the amount of foam injection being done these days it seems that there must be a lot skiers with major congenital or post traumatic deformities.

In the final article,  Sports Medical Criteria of the Alpine Ski Boot – W Hauser & P. Schaff, Technical Surveillance Association, Munich, West Germany, Schaff and Hauser discuss the problems caused by insufficient mobility in the knees and ankles of most skiers and especially much too small a range of motion in the ankles. The authors speculate that “in the future, ski boots will be designed rationally and according to the increasing requirements of the ski performance target groups.”

I’ll conclude this post with some excerpts from my US Patent 5,265,350 filed on February 3, 1992.

Skis, ice skate blades, roller skate wheels and the like represent a medium designed to produce specific performance characteristics when interacting with an appropriate surface. The performance of such mediums is largely dependent on the ability of the user to accurately and consistently apply forces to them as required to produce the desired effect.

In addition, in situations where the user must interact with external forces, for example gravity, the footwear must restrain movements of the user’s foot and leg in a manner which maintains the biomechanical references with the medium with which it is interacting. It is proposed that in such circumstances, the footwear must serve as both an adaptive and a linking device in connecting the biomechanics of the user to a specific medium, such as a ski, for example. This connective function is in addition to any type of fixation employed, in this instance, to secure the footwear to the ski.

Existing footwear does not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg.

More that 2o years later, existing footwear (ski boots) still do not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg. Since it is unlikely that ski boots will be available any time in the near future that meet the preceding requirements, I had to find a way to work within the limits of presently available ski boots. In my next post I will explain how I avoid getting shafted by the shaft of my ski boot.




The title refers to the ability of the shaft of a ski boot to disrupt and contaminate the neuromuscular processes of balance and, in particular, to diminish or extinguish the contraction of muscles that would normally act to oppose forces that tend to disturb balance. As a prelude to discussing the measures that I use in my ski boots to mitigate these effects I will address the widespread perception among ski professionals and coaches that the ski boot does not signficantly affect skier performance.

Although the design of the modern rigid plastic ski boot has some serious shortcomings, the fact of the matter is that some skiers can ski reasonably well in these boots. It is also a fact that many World Cup and Olympic medals have been won on them. This has spawned the erroneous assumption that if a skier is having problems with their skiing skills the problem lies with them, not their equipment and especially not their ski boots. The reasoning of many ski professionals and coaches is that if they can  ski without apparent difficulty in stock ski boots then acquiring skill in skiing is a simple matter of technical training and practice.  Unless one regressed, as I did after switching from low-cut leather boots in which I was an expert skier to higher, rigid plastic boots in which I was reduced to the level of a beginner, they would not have the benefit of the perspective of the ski boot as the problem. Further, until one gets very close to the optimal ski boot configuration any interference with the function of the feet and lower limbs, in particular the processes of balance, caused by the ski boot is unlikely to be perceived.

My experience with my spouses’ ski boots serves an example of how fine the line is that separates performance from dysfunction. This season I made what I thought were minor changes to her boots. But these minor changes had negative effects on her skiing far in excess of anything I could have expected. I replaced the soft fabric Lange liners in her 10 year old Head boot shells with identical new Lange liners. The reason for this change was that the old liners were disintegrating. I removed the stock Lange tongue from the new liners so she could use the tongue fit system from her old liners. But I did not cut away the seams along the sides in the front of her liner as I had done with her old liners. The reason I do this is to ensure that the metatarsals can spread under load. One significant change that I did make was to use a stock Lange insole in place of the much thinner insole in her old liners. The special tongue fit system I invented in her boots is the principal fit component. This did not change.

What happened on snow was startling.  In the first few meters of her first run my spouse went from an expert to a struggling beginner. She appeared to have little balance or control. She told me her boots felt completely wrong and that she was disoriented and could not find her balance. Her situation was so bad that we left the ski hill after one run and went home to assess the situation. After we got home I cut away most of the front of her liners. I also heated the Lange insoles and pressed them dead flat because she complained they were digging into her arch. This seemed incredible to me because the Lange insoles have almost no arch form.

The photos below show the new unmodified Lange liner on the left with the same liner modified after her skiing experience on the right. I left a small amount of the toe box of the liner to help keep the insole from creeping forward. On the left liner I also cut away some of the plastic backing of the cuff to allow her calf muscle to sit properly.

Screen Shot 2014-04-08 at 2.13.58 PM

When we went back on the ski hill the change in her skiing was dramatic and instantaneous. A similar thing happened to me with interference with the arch of my left foot. When I am in a moderate to high speed GS turn the tension in the sole  of my outside foot is so great that it feels as if my foot is made of steel and the base of support on my ski feels as if I am standing on a concrete surface. With this amount of tension anything that impinges on my arch feels like a sharp stone in my shoe. I had an interference problem in the arch of my left foot that was not addressed by shaving down an already flat insole. I eventually traced the problem to the detail of the sole of the liner that rises up along the inner aspect. Cutting away this section of the sole resolved the problem. The photo below shows the portion of the liner that was causing the problem.

Arch int

The ability of the ski boot to significantly affect skier performance was described in The Shoe in Sport 1989 – Published in Germany in 1987 as Der Schuh im Sport. ISNB 0-8151-7814-X (27 years ago). Despite the call by scientists for a ski boot based on a design that from a functional point of view that takes into consideration the realities of functional anatomy (axes etc.) a significant component of the design of ski equipment and the formulation of ski teaching and coaching methodologies continues to be influenced by opinion and subjective observation. Ski pros and coaches tend to interpret what they see in the context of what they know or what they believe they know. Although athletic prowess is arguably a factor, a significant but unrecognized factor confounding the analysis of technical faults is that the ski boot acts as a selective filter that literally determines how well someone can ski based on the physical characteristics of their feet and legs. Those who are able to ski with reasonable efficiency within the constraints of a ski boot become ski instructors. Those who ski really well become racers. The remainder languish as terminal intermediates. Levels of competition act as selective filters that eliminate those more compromised by the constraints imposed by their ski boots. Ski pros and coaches tend to view their charges based on a paradigm in which the ski boot has no effect on skier performance. Even today some coaches continue to argue that the in-boot technology that I invented and that Podborski used to compete and win on a partially healed knee was not a factor in this success, that it was training or some other factor.

A  book that I just finished reading, one  that substantiates my position that with rare exceptions ski teaching methods tend to overlook the effect of the boot on the skier, is Ski Simply Well by Ken Chaddock ( Chaddock is a local Ski Pro who teaches on Whistler-Blackcomb. With the exception of a few omissions, Ski Well Simply is simply one of the best books I have ever read on ski teaching, bar none. But while Chaddock raises the issue of cuff cant angle which is important, he appears to make the common assumption that those who read his book will be able to ski the same way he does. What Chaddock gets right, and he really gets it right, is his description of how he develops plantar tension in the soles of his feet and skis with minimal use of the cuff of the boot. Chaddock gets so much right that in a future post I will fill in the missing pieces and connect the dots he missed.

In my next post I will describe how I build a tongue that lets me ski in a minimal boot shell.