Ski Equipment posts


In reviewing recent articles on ski boot fitting I encountered the same perfect fit of the boot with the shape of the foot and leg and ski boots must be tightly buckled for good balance and control narrative fabricated decades ago to justify the interference with the actions of the joints of the ankle and leg created by the rigid plastic shell ski boot.

When the first rigid shell plastic ski boots were introduced, the field of biomechanics, as it exists today, was in its infancy. Even until recently, the human foot was modelled as a rigid block which was consistent with the shoe last theory and the theory that the perfect fit of ski boots with the foot and leg of the user is the best option for skiing. Further support for the support and immobilize theory came from the vilification of pronation arising out of the misapplication of Root’s Neutral theory (1.)

By the time the authoritative medical text, The Shoe in Sport, was published in 1987, the knowledge of the biomechanics of the human foot had progressed to the point where tight-fitting ski boots and loading the ankle joint were recognized as unphysiologic.

Few forms of athletics place as high demands on the footwear used in their performance as alpine skiing. It (the ski boot) functions as a connecting link between the binding and the body and performs a series of difficult complex tasks. (2.)

Investigations by Pfeiffer have shown that the foot maintains some spontaneous mobility in the ski boot. Thus the total immobilization by foam injection or compression by tight buckles are unphysiologic.(2.)

Many alpine skiers have insufficient mobility in their knees and ankle. The range of motion, particularly in the ankles, is much too small.(2.)

From a technical (skiing) point of view, the ski boot must represent an interface between the human body and the ski. This implies first of all an exchange of steering function, i.e., the skier must be able to steer as well as possible, but must also have a direct (neural) feedback from the ski and from the ground (snow). In this way, the skier can adapt to the requirements of the skiing surface and snow conditions. These conditions can be met if the height, stiffness, angle and functions (rotational axes, ankle joint (AJ)/shaft) of the shaft are adapted, as well as possible to the individual skier. (3.)

The articles on ski boots in the Shoe in Sport identified the objectives I was seeking in my efforts to design a ski boot based on principles of what is now referred to as neurobiomechanics. By the time I had formulated my hypothetical model of the mechanics, biomechanics and physics of skiing in 1991 I understood the need to restrain the foot in contact with the base of a ski boot and maintain the position of the foot’s key mechanical points in relation to the ski while accommodating the aspects of neurobiomechanical function of the foot and leg required for skiing. This was the underlying theme of the US patent that I wrote in February of 1992.

Existing footwear does not provide for the dynamic nature of the architecture of the foot by providing a fit system with dynamic and predictable qualities to substantially match those of the foot and lower leg. – US patent No. 5,265,350: MacPhail

On June 2, 2013 I published the post TIGHT FEET, LOOSE BOOTS – LOOSE FEET, TIGHT BOOTS (4.) in which I describe how attempts to secure the foot to a ski in a manner that interferes with the physiologic mechanisms that fascially tension and stiffen the structures of the foot that render it dynamically rigid actually reduce the integrity of the joint system of the lower limbs and hips resulting in a looser connection with the ski.

Studies done in recent years confirm the role of the active state of the architecture and physiology of the foot to postural control and balance.

These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity. (5.)

The science of neurobiomechanics and the understanding of the mechanisms of balance and the role of the sensory system in human movement is accelerating. The time is long overdue for skiing to abandon it’s outdated concepts and align it’s thinking with the current state of knowledge.

  2. Ski-Specific Injuries and Overload Problems – Orthopedic Design of the Ski Boot –  Dr. med. H.W. Bar, Orthopedics-Sportsmedicine, member of GOTS, Murnau, West Germany
  3. Biomechanical Considerations of the Ski Boot (Alpine) – Dr. E. Stussi,  Member of GOTS – Chief of Biomechanical Laboratory ETH, Zurich, Switzerland
  5. Foot anatomy specialization for postural sensation and control


The subject of my 4th post published on May 14, 2013 was the role of torques in skier balance. That this was one of my most important yet least viewed posts at 109 views suggests that the role of torques in skier balance is a concept foreign to skiers especially the authorities in the ski industry. This post is a revised version supplemented with information results from a recent study on balance control strategies.

While everyone recognizes the importance of good balance in skiing, I have yet to find an definition of what is meant by good balance, let alone a description of the neurobiomechanical conditions under which a skier is in balance during actual ski maneuvers. In order to engage in a meaningful discussion of balance, one needs to be able to describe all the forces acting on the skier, especially the opposing forces acting between the soles of the feet of the skier and the snow surface (ergo – applied and ground or snow reaction forces). Without knowing the forces involved, especially torques, any discussion of balance is pure conjecture. In 1991,  I formulated a hypothetical model that described these forces.  I designed a device with biomedical engineer to capture pressure data from the 3-dimensional forces (torques) applied by the foot and leg of the skier to the internal surfaces of the boot during actual ski maneuvers.

Test subjects ranged from Olympic and World Cup champions to novice skiers. By selectively introducing constraints that interfered with the neurobiomechanics of balance even a World Cup or Olympic champion calibre skier could be reduced to the level of a struggling beginner. Alternatively configuring the research device to accommodate the neurobiomechanical associated with skiing enabled novice skiers to use  balance processes similar to those of Olympic champions. To the best of my knowledge, no one had ever done a study of this nature before and no one has ever done a similar study since.

When analyzed, the data captured using the device called into question just about everything that is accepted as fact in skiing. This study was never published. For the first time I will present the data and describe the implications in future posts. We called the device shown in the photo the Birdcage. It was fully instrumented with 17 sensors strategically placed on a 3 dimensional grid.


The Birdcage instrumentation package was configured to detect coordinated neuromuscularly generated multiplane torques that oppose and maintain dynamic balance against external torques acting across the running surface of the inside edge of the outside ski in contact with the source of GRF (i.e. the snow).

  1. plantarflexion-dorsiflexion
  2. inversion-eversion
  3. external/internal vertical axial tibial rotation

Ankle torques are applied to the 3 points of the tripod arch of the foot (heel, ball of big toe, ball of little toe) and can manifest as hindfoot to rearfoot torsion or twisting wherein the forefoot rotates against the rearfoot.

A recent study (1.) on the role of torques in unperturbed (static) balance and perturbed (dynamic) balance found:

During perturbed and unperturbed balance in standing, the most prevalent control strategy was an ankle strategy, which was employed for more than 90% of the time in balance.

In both postures (unperturbed and perturbed) these strategies may be described as a single segment inverted pendulum control strategy, where the multi-segment system is controlled by torque about the most inferior joint with compensatory torques about all superior joints acting in the same direction to maintain a fixed orientation between superiorsegments.

The alignment of opposing forces shown in typical force representations in discussions of ski technique is the result of the neuromuscular system effecting dynamic balance of tri-planar torques in the ankle-hip system.

NOTE: Balance does not involve knee strategies. The knee is an intermediate joint between the ankle abd hip and is controlled by ankle/hip balance synergies.

The ankle strategy is limited by the foot’s ability to exert torque in contact with the support surface, whereas the hip strategy is limited by surface friction and the ability to produce horizontal force against the support surface.

Ankle balance strategies involve what are called joint kinematics; 3 dimensional movement in space of the joint system of the ankle complex. Contrary to the widely held belief that loading the ankle in a ski boot with the intent of immobilizing the joint system will improve skier balance, impeding the joint kinematics of the ankle will disrupt or even prevent the most prevalent control strategy which is employed for more than 90% of the time in balance. In addition, this will also disrupt or even prevent the CNS from employing multi-segment balance strategies.

Regardless of which strategy is employed by the central nervous system (CNS), motion and torque about both the ankle and hip is inevitable, as accelerations of one segment will result in accelerations imposed on other segments that must be either resisted or assisted by the appropriate musculature. Ultimately, an attempt at an ankle strategy will require compensatory hip torque acting in the same direction as ankle torque to resist the load imposed on it by the acceleration of the legs. Conversely, an attempt at a hip strategy will require complementary ankle torque acting in the opposite direction to hip torque to achieve the required anti-phase rotation of the upper and lower body.

Balance is Sensory Dependent

As a final blow to skier balance supporting the arch of the foot and loading the ankle impairs and limits the transfer of vibrations from the ski to the small nerve sensory system in the balls of the feet that are activated by pressure and skin stretch resulting in a GIGO (garbage in, garbage out) adverse effect on balance.

Spectral analysis of joint kinematics during longer duration trials reveal that balance can be described as a multi-link pendulum with ankle and hip strategies viewed as ‘simultaneous coexisting excitable modes’, both always present, but one which may predominate depending upon the characteristics of the available sensory information, task or perturbation.

  1. Balance control strategies during perturbed and unperturbed balance in standing and handstand: Glen M. Blenkinsop, Matthew T. G. Pain and Michael J. Hiley – School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK – Royal Society Open Science


At the time I filed an application for my second patent in April of 1989 , I had some ideas of what a ski boot should do for the user from what I had learned from the dorsal containment system I was granted a patent for in 1983. But I was still a long way from being able to answer the question.

A watershed moment came for me in 1990 when I read a medical textbook published in 1989 called The Shoe in Sport on what is referred to in the text as ‘the shoe problem’.

The Shoe in Sport, supported by the Orthopedic/Traumatologic Society for Sports Medicine, was originally published in German in 1987 as Der Schuh im Sport. The textbook is a compilation of the collective efforts of 44 international experts, including Professor Peter Cavanagh, Director of the Center for Locomotion Studies at Penn State University, biomechanics experts from the Biomechanical Laboratories at ETH Zurich and the University of Calgary, Professor Dr. M. Pfeiffer of the Institute for Athletic Sciences at the University of Salzburg, Dr. A. Vogel of the Ski Research Syndicate, Dr. W. Hauser and P. Schaff of the Technical Surveillance Association Munich and many other experts in orthopedic and sportsmedicine on  ‘the shoe problem’.

The buyers of athletic shoes are always looking for the “ideal shoe”. They encounter a bewildering variety of options and are largely dependent for information on the more or less aggressive sales pitches that directed at all athletes in all possible ways. (1.)

This volume should assist in defining the role and the contributions of science in the further development of the athletic shoe and in the recognizing of the contributions made by the various research groups, who are all interested in the problems of the athletic shoe. (1.)

Dazzled by the fancy names, the buyers believe that they can match the athletic performance of the champion who wears “that shoe,” or after whom the shoe is named. The choice is not made easier by the plethora of promises and a roster of specific advantages, most of which the merchant cannot even explain. (2.)

When The Shoe in Sport was first published in 1987, the field of biomechanics was in its infancy as was the associated terminology. This created an opportunity for a new marketing narrative of techno buzzwords. Since the consumer had no way to understand, let alone assess, the validity of any claims,  the only limits to claims made for performance was the imagination of the marketers. Consumers were increasingly bombarded with features that far from recognising the human foot as a masterpiece of engineering and a work of art as espoused by Leonardo da Vinci, suggested the human foot is seriously flawed and in need of support even for mundane day-to-day activities. These marketing messages distract attention away from the real problem, the design and construction of shoes and their negative effect on the function of the user; the modern ski boot being one of the worst examples.

The Shoe Problem

For this reason, the “shoe problem”as it exists in the various fields of athletic endeavour, will be studied with respect to the biomechanical, medical , and technical aspects of shoemaking. The findings (criteria) should enable the interested reader to distinguish between hucksterism and humbug on the one side and the scientifically sound improvements in the athletic shoe on the other. (1.)

Form follows Human Function

The Shoe in Sport focusses on the medical orthopedic criteria in offering guidelines for the design of shoes for specific athletic activities including skiing and ice skating.

Less attention will be paid to the technical and material aspects of the running surface and shoe, and more to the medical and orthopedic criteria for the (design of) athletic shoe. For this reason, the “shoe problem”as it exists in the various fields of athletic endeavour, will be studied with respect to the biomechanical, medical , and technical aspects of shoemaking. 

This volume should assist in defining the role and the contributions of science in the further development of the athletic shoe and in the recognizing of the contributions made by the various research groups, who are all interested in the problems of the athletic shoe.

Barefoot as the Reference Standard

Research done at the Human Performance Laboratory at the University of Calgary found that optimal human performance is produced with the unshod foot and that human performance is compromised by the degree of interference; the greater the interference caused by any structure appended to the foot, the greater the compromise of performance. This is true even for a thin sock.

The authors of The Shoe in Sport ask:

Is there really a need for shoes? The examples of athletes like Zola Budd and Abebe Bikila suggest in a technologic environment the evolution of the athletic shoe parallels the decline of our organs of locomotion. (1.)

The Future of the Ski Boot

The shoe affects the athlete’s performance and serves to support the foot as a tool, as a shock absorber, and as a launching pad. Giving serious consideration to our organs of locomotion opens up an enormous area of activity to the athletic shoe industry. (1.)

This is especially true of the ski boot. The questions that needs to be asked is how does the structure of the ski boot affect the human performance of skier and what is the minimal combination of structure that will enable maximum skier performance.

Few forms of athletics place as high demands on the footwear used in their performance as alpine skiing. It (the ski boot) functions as a connecting link between the binding and the body and performs a series of difficult complex tasks. (3.)

Before the question of what structure of a ski boot will maximize skier performance can be answered, the functional mode of the human system in the complex physical environment associated with skiing must be known. The first and most important and fundamantal component of this question is explaining the mechanism by which the human system is able to achieve a state of balance on the outside ski characterized by neuromuscular control of torques in all 3 planes across the joints of the lower limb and pelvis.

  1. Introduction by Dr. med. B. Segesser, Prof. Dr. med. W. Pforringer
  2. 2. Specific Running Injuries and Complaints Related to Excessive Loads – Medical Criteria of the Running Shoe by Dr. med. N. L. Becker – Orthopedic Surgeon
  3. Ski-Specific Injuries and Overload Problems – Orthopedic Design of the Ski Boot –  Dr. med. H.W. Bar, Orthopedics-Sportsmedicine, member of GOTS, Murnau, West Germany


The problem associated with measuring boot board (zeppa) and/or binding (delta) ramp angle as individual components is that the resulting angle may not accurately reflect the actual angle between the plane of the base of the upper surface of the boot board and the base of the ski in the boot/binding/ski system. Boot boards of the same zeppa angle may not necessarily have the same zeppa angle with the base of the boot shell due to design and/or manufacturing variances.

A level inserted into a ski boot shell with the boot board in place can be difficult to read. With the liner in place, this is not a viable option. A better option is to extend the angle of the boot board up above the top of the shaft of the boot so it can be accurately and easily read.

A simple device for this purpose can be made for about $25 with basic hand tools and a few screws using 2 – 8 in (20 cm) x 12 in (30 cm) x 1/8 in (3 mm) thick steel carpenter’s squares.

Place the long arms of the squares over each other as shown in the photo below and clamp them securely together. Two-sided tape can be used to help secure the alignment. Then drill a hole  at one point on the vertical leg and screw the 2 squares together.

Check the parallelness of the 2 opposite arms on a level surface with a digital level. If good, secure the 2 levels together with a second screw. Then affix a section of 3/4 in (2 cm) x 3/4 in (2 cm) square or L-bar bar on the top of the extender to rest the level on.

To use the extender, place a boot shell on a hard, flat, level surface. If the surface is not level it should be leveled before the extender is used.

The photo below shows the extender being used to measure the zeppa angle of an old Salomon SX-90 shell. I didn’t have the electronic level for the photo. So I used a small torpedo level.

Insert the lower arm of the device into the shell as shown in the right hand image and place the lower arm firmly on the boot board. Place the level on the top arm and read the angle.

The photo below shows the same process as above. But in this example, the liner is in place. If an insole is in the liner, it should be flat with no arch form. I highlighted the square bar with pink to make it easily visible.

A check of the zeppa-delta angle of the boot-binding-ski system can be done by mounting the boot in the binding of the ski that is part of the system and clamping the ski to a flat surface with sufficient force to ensure the camber is removed and the running surface of the base is in full contact with the supporting surface. A strap wrapped over the front of the boot shell and under and around the supporting surface then tensioned will help ensure that the toe plate of the binding is loaded.

The Zeppa-Delta Angle Extender provides the user with a fast accurate way to know their total number. What’s yours?



When readers click on my blog address at, analytics give me a hierarchy of the countries with the most views and the most popular posts in ascending order. This helps me identify which content resonates most strongly with viewers and which content draws a blank.

As I write this post, the top five countries are the US followed by Croatia, the United Kingdom, Slovakia and France.

The most viewed post today is THE SHOCKING TRUTH ABOUT POWER STRAPS; far and away the most popular post I have published to date. But the most important posts by far that I have ever written, A DEVICE TO DETERMINE OPTIMAL PERSONAL RAMP ANGLE and STANCE MUSCLE TENSIONING SEQUENCE EXERCISE barely sputtered in comparison. This strongly suggests that far from just some small gaps in the knowledge base skiing is founded on, massive craters exist.

Arguably the most important aspect of skiing is a strong stance. Any variance in the fore-aft angle of  the plane of support under the feet and the plane of the base of the ski has significant impact on stance. Yet these subjects are barely blips on the Doppler Radar of the ski industry.

Since I started the dynamic ramp angle assessment project a few weeks ago I have found that when asked to do so, it is rare for a skier of any ability to be able to assume a strong ski stance in an off the ski hill environment. Even when a skier  skis with a relatively strong stance, they seem to lack a sense of what a strong stance feels like. Because of this, they lack the ability to consciously replicate a strong stance. If asked to do so, they would be unable to coach a skier in the sequence of events that I described in my last post

In the dynamic ramp angle assessment project, I  have also observed that skiers with with a boot/binding ramp angle greater than 2.8 degrees appear to have become accustomed to the associated unstable, dysfunctional feeling and identify with it as ‘normal’. Before I can test them, I have to spend time coaching them into the correct stance because it feels unnatural to them.

When I go back and forth between a strong functional stance on a flat, hard level surface to a stance on the dynamic ramp angle device set to an angle of 4 degrees, I can get close to the same angles of ankle, knee and hip. But when I do, I feel strong tension, stiffness and even pain in my mid to lower back which is  common in some skiers and even racers.

Based on results to date with the dynamic ramp angle device, it appears as if strong skiers ski best with ramp angles close to zero. But depending on their sense of balance and athletic ability, they may have a wide range in which they sense little difference on the effect of ramp angle until they approach the upper limit of stability. While they may be able to ski well with a ramp angle close to the maximum limit of stability, ramp angles much above 1.2 to 1.5 degrees may not offer any benefits. This can only be tested on skis where balance is tested by dynamic forces which cannot be replicated in a static setting.

Issues affecting skier stance were discussed in detail in my post, THE SHOCKING TRUTH ABOUT POWER STRAPS. Here are the excerpts I posted from the chapter on The Ski Boot in the book, The Shoe in Sport (1989), published in German in 1987 as Der Schuh Im Sport– ISNB 0-8151-7814-X

“If flexion resistance stays the same over the entire range of flexion of the ski boot, the resulting flexion on the tibia will be decreased. With respect to the safety of the knee, however, this is a very poor solution. The increasing stiffness of the flexion joint of the boot decreases the ability of the ankle to compensate for the load and places the entire load on the knee”. – Biomechanical Considerations of the Ski Boot (Alpine) – Dr. E. Stussi,  Member of GOTS – Chief of Biomechanical Laboratory ETH, Zurich, Switzerland

“The shaft of the boot should provide the leg with good support, but not with great resistance for about two thirds of the possible arc, i.e., (14 degrees) 20 to 22 degrees. Up to that point, the normal, physiologic function of the ankle should not be impeded”.

“Previous misconceptions concerning its role in absorbing energy must be replaced by the realization that shaft pressure generates impulses affecting the motion patterns of the upper body, which in turn profoundly affect acceleration and balance.

“When the lateral stability of the shaft (the leg) is properly maintained, the forces acting in the sagittal direction should not be merely passive but should be the result of active muscle participation and tonic muscular tension. If muscular function is inhibited in the ankle area, greater loads will be placed on the knee”. – Kinematics of the Foot in the Ski Boot – Professor  Dr. M. Pfeiffer – Institute for the Athletic Science, University of Salzburg, Salzburg, Austria

It has been over 40 years since international authorities on sports science and safety raised red flags concerning the adverse effects of ski boots design and construction on skier stance, balance and the potential to cause or contribute to injury. It is time that their concerns were taken seriously and acted on. Research on stance and the effect of such things as zeppa and delta ramp angles is urgently needed.



As I was in the process of writing this post, a FaceBook group on skiing posted a link to an article From PSIA: Examining Transitions. The article is based on a presentation last fall by US Ski Team Head Men’s Coach, Sasha Rearick, in which he shed new light on transitions (1.).  While Rearick did shed light on some events associated with transitions, as with previous efforts by others on this subject, Rearick failed to shed light on the mechanics and physics associated with edge change.

As I explained in my last post, transferring the weight from the outside foot and ski of a turn to the inside foot and ski in the transition phase sets in motion what I call the Eversion/Internal Rotation Cascade that rotates the base of the ski into a transient moment of full contact with the surface of the snow between changing to the new (downhill) edge.

At the start of the transition leading up to ski flat between edge change, the center of pressure (COP) of the weight of the body applied by the sole of the inside foot will be under the heel where it is aligned on the proximate center of the ski. In this configuration, the force applied to the ski by the skier is working with gravity to rotate the ski.

The post left off by showing how rotational inertia will tend to make the ski continue rotating about the uphill edge past ski flat and penetrate into the snow surface on its downhill aspect as shown in the graphic below.

Rotational inertia will tend to make the inside edge of the new outside ski automatically rotate into the turn except for the fact that the force FW applied by the skier is on the wrong side of the new edge.

The graphic below has a dashed red reference that is parallel with the snow surface.

If the force FW applied by the skier is still aligned on the transverse center of the ski, it act will act to oppose edge change as shown in the graphic below. When the axis of rotation of the body of the ski changes with a change in edges, the transverse aspect of the base of the ski and the platform under the skier’s foot will tend to accelerate into an eversion translation. But this can only happen if the associated biomechanics are not interfered with by the structures of the ski boot.

The graphic below shows the change in the mechanics of rotation associated with edge change.

At the start of the transition, movement of the mass of the skier’s upper body is in phase with the downhill rotation of the ski and the force FW applied to it. But when the ski changes pivots at edge change and the mass of the skier continues to move downhill, the force FW applied to the ski will tend to rotate it back to ski flat; i.e out of the turn, unless the point of application of force FW changes during ski flat as shown in the graphic below and COM of the skier is aligned with force FW.

………. the angle between the platform and force you apply to it, the platform angle, must be 90 degrees or smaller.  – page 19, The Ski’s Platform Angle, Ultimate skiing; Le Master

The shift in center of pressure from the heel to the ball of the foot in a turn sequence seen in pressure studies of expert skiers is well documented (2., 3., 4). What the studies are really confirming is the use by expert skiers of the Two Phase Second Rocker mechanism to rock (tip) the outside ski on edge and control the edge angle during the load phase of a turn sequence.

Since the limit of the position of the application of force by the foot in relation to the inside edge of the outside ski is the center of the ball of the foot the effect of ski width underfoot and stand height should be obvious. Both rotational inertia and torque will increase as the width of a ski underfoot (profile width) is reduced and stand height increased. When Ligey says he creates pressure, he is creating far more than just pressure.

While LeMaster appears to recognize the importance of a platform angle less than 90° for edge control and, to some degree, the effect of stand height, the explanation offered for superior edging is that this can be attributed to waist width and stand height making skis more like ice skates.In my next post, I will discuss the role of Turntable Rotation in setting up a platform under the body of the outside ski for a skier to stand and balance on while maintaining edge angle.




One of the most important events in the turn sequence is edge change. Yet, it is rarely mentioned in technical discussions. One of the few references I was able to find on edge change is in the CSIA Technical Reference which states:

Edge Change = Balance Change: Changing edges requires a change of balance.

Edge change occurs during an unbalanced, controlled fall in the transition phase that leads to the development of a balanced position on the outside ski as it crosses the fall line in the bottom of a turn. Properly executed, edge change leads to the development of a platform under the outside ski for the skier to stand and balance on.

The edge change sequence starts in the transition phase when a skier begins to transfer weight from the outside (downhill) ski to the inside (uphill ski). At the start of the transition, the edges of the inside ski are uphill and on the lateral (little toe) side of the foot. From a perspective of the gait cycle, the base of the ski is inverted (turned inward towards the center of the body). This is the normal configuration when the foot is unweighted in the gait cycle. The foot strikes the ground on the lateral (little toe) side and rotates about it’s long axis in the direction of eversion to bring the three points of the tripod of the foot into contact with the ground. As the foot everts, the leg rotates internally through torque coupling in the subtalar joint. The normal kinetic flow from foot strike to the support phase in mid to late stance is one of inversion of the foot/external rotation of the leg to eversion of the foot/internal rotation of the leg. Put another way, the human lower limbs will naturally rotate into a turn so long as the biomechanics are not interfered with.

At the start of the transition leading up to ski flat between edge change, the center of pressure (COP) of the weight of the body applied by the sole of the inside foot will be under the heel where it is aligned on the proximate center of the ski.

The Eversion/Internal Rotation Cascade

Transferring the weight from the outside foot and ski to the inside foot and ski in the transition phase sets in motion what I call the  Eversion/Internal Rotation Cascade. When the cascade starts, the force F W applied to the ski by the foot  by the weight of the body will impart rotational inertia as the ski rotates about the pivot point formed by its inside edge.

For the sake of simplicity, the stack of equipment between the sole of the skier’s foot and the snow is represented by a rectangle in a 3:2 ratio where the stand height is 50% higher than the width (FIS maximum stand height = 93 mm – maximum profile width = 63 mm). Sidecut is also not shown.

The following graphics show the sequence of the Eversion Cascade. Note: Internal rotation of the leg is not shown in this sequence.

The first graphic below shows the moment or torque arm ma that is set up by the offset that exists between GRF from the firm piste acting at the inside edge and the point where the center of pressure of the weight of the body acts in the plane of the base of the ski. The large red arc shows the radius of rotation. The small red arc shows the radius of the moment of force. In this sequence, the ski is rotating downhill away from the pivot at the uphill edge.

When the base of the ski comes into full contact with the surface of the snow, rotational inertia, will make it want to continue rotating about the uphill edge and penetrate into the snow surface on the downhill aspect. If the force FW applied by the weight of the body is still aligned on the transverse center of the ski, it will oppose edge change.

In my next post I will discuss how the Second Rocker affects the mechanics of edge change at ski flat.