Footwear science posts

THE MECHANICS + BIOMECHANICS OF PLATFORM ANGLE – PART 13

The  article that follows was published on June 18, 2010 on an internet group called EPICSKI.  I have revised the article to improve clarity and consistency with the technical terms used in the THE MECHANICS + BIOMECHANICS OF PLATFORM ANGLE series of posts.

The Birdcage Experiments

 by David MacPhail

In the summer of 1991 a science team Steve Podborski and I had assembled to develop a new ski boot conducted pioneering studies on the Blackcomb summer glacier with a device we affectionately named the “Birdcage.” The purpose of the studies was to test my hypothesis of the mechanics and biomechanics of platform angle as it pertains to skier dynamic stability and the basic premise of my hypothesis that explains how  GRF acting on the inside edge of the outski is extended out under the platform of the ski. The Birdcage is shown in the photo below.

Birdcage

The Birdcage was fit with 16 sensors each with its own channel as shown in the legend below.

Specific mechanical points of the foot, in particular the ends of the eccentric torque arm, connected to specific points of the rigid structure of the Birdcage while leaving the remaining areas of the foot substantially unconstrained. The object of the experiments was to study the effects of specific forms of constraint applied to key mechanical points of the foot we had previously identified on skier balance as it pertains to steering and edge control. The experiments also included tests that studied the effect of interfering with specific joint actions. The experiments were designed in accordance with a standard scientific protocol; one that standardized conditions from test to test while varying one factor at a time.

For example, to study the effects of cuff forward lean angle on specific muscles, the range of rotation of the cuff was kept the same from test to test while the initial angle at which the cuff was set was varied from test to test. The cuff was fit tightly about the leg so as to reduce to a minimum any effects of movement of the leg within the cuff. Other aspects of the test such as position of the heel and ball of the foot in relation to the centerline and inside edge of the ski were kept the same.

By using such test protocols the firing sequence of specific muscles and their effect on dynamic stabilty could be studied. This data could then be used to determine the sequence of events and relationship steering to edge platform angle control. It was discovered that by varying the conditions that affected the firing and effectiveness of the soleus muscle, it could be played like a musical instrument. For example, if the cuff angle were set too erect the soleus muscle would make multiple attempts at the start of each loading sequence to try and get COG over the head of the first metatarsal.

Our primary tester for the experiments was Olympic bronze medallist and World Cup Downhill Champion Steve Podborski. Steve is shown in the photos below having the Birdcage adjusted to his foot and leg.

The cable coming from the rear of the device is connected to a Toshiba optical drive computer (remember, this is 1991) that Toshiba loaned us in support of our program. The biomedical engineer and the Toshiba computer are shown in the photo below.

Since telemetry was too costly and less positive we used a 1200 ft cable that linked the Birdcage to the Toshiba computer set up in a tent. Although the technician could not see the skiers being studied within a short period of time he could easily analyze their technical competence in real time by assessing the incoming flow of data from the sensors fit to the Birdcage. This was even more remarkable considering that the technician had no background in skiing, ski teaching or coaching.

The testers wore a harness to keep the cable from interfering with their movements. A chase skier ensured that the cable remained behind the testers and did not pull on the testers. Of interest is the fact that I was unable to elicit any interest in the results of the Birdcage study

As far as I know a study of this nature had never been done before and to the best of my knowledge a similar study has never been repeated since the Birdcage experiments. The Birdcage remains one of the most sophisticated analytical sports devices ever conceived even by todays’ standards. The Birdcage research vehicle is the barefoot minimum standard for the ski boot.

THE MECHANICS + BIOMECHANICS OF PLATFORM ANGLE: PART 6


In my last post I identified whole leg rotation of the head of the femur at its joint in the pelvis as the source of the rotational force acting 180 degrees to the transverse plane of the platform. In the technical terms of skiing whole leg rotational force is called steering.

When I started skiing in 1970 the ability to hold an edge on hard pistes and especially ice was the exclusive domain of elite skiers. Back then, the majority of skiers and racers were still skiing in low cut leather or plastic boots with the shaft not much higher than the ankle bones.

Debates raged in ski magazines as to the reason why elite skiers were able to easily hold an edge on ice while the majority of skiers struggled. The question was posed as to which came first. Did elite skiers edge first and then turn their skis or did they turn their skis and then edge? The consensus was that the best way to hold an edge and not to slip was to establish edge grip early and not slip when the forces increased. Recovering an edge once a ski started to slip was next to impossible. 

Since holding an edge during a turn involves movement of the skier there was no static way to demonstrate how to hold an edge on ice. The only option was watch an elite skier and try and copy them. This was seldom successful because even elite skiers couldn’t describe what they were doing. Strength and athletic ability and/or level of fitness did not seem to be significant factors.  Even elite hockey players often struggled to hold an edge on skis. I had questions but few answers. Finally a female ski instructor gave me a valuable clue when she told me that she presses down hard on the ball of her outside foot to make her edges hold on hard snow.

Clues such as turning the skis and putting pressure on the ball of the outside foot pointed towards the mechanism of the mechanics of platform angle and dynamic balance. But before the mechanics could be explained the introduction of the high shaft rigid plastic ski boot distracted attention away from the problem. High stiff plastic ski boots made it easy for even a novice to stand, crank their knees into the hill and put their skis on edge. This turned out to be a good marketing tool because it made holding an edge appear easy even for a novice. But using the leg as a lever didn’t work except under ideal conditions.

When I tried using my leg to hold a ski on edge on ice I met with marginal success. Later, when I modelled the mechanics the combination of forces didn’t result in a mechanism that would enable a skier to cut a step into hard pistes so as to create a platform and control its angle.

But the crank the knee into the hill option prevailed and took root. It provided an easy way to demonstrate a complex issue. Once knee angulation became established the ski industry appeared to lose interest in trying to discover the real mechanism responsible for platform mechanics. In spite of a protracted effort I didn’t begin to understand the mechanism until about 1989 after getting some valuable clues from the chapter on the ski boot in the medical text, The Shoe In Sport (see my post – THE SHOCKING TRUTH ABOUT POWER STRAPS). But getting insights on the mechanism entailed making some significant discoveries that have only come to be recognized and studied in the l ast 10 years.

One discovery I made that was fundamental to understanding platform mechanics is that the Achilles tendon is capable of transferring large forces to forefoot as the pelvis moves forward in the stance phase of locomotion.

Steer onto the Platform

Although steering and edging are often discussed together they are typically considered different, but related, skills that are blended together. In fact, they are one and the same. Elite skiers steer their skis onto a platform but only if their equipment, in particular their ski boots, enables the requisite neurobiomechanics. 

The Center of Rotation of the Foot 

The turning effort from the pelvis is applied to the foot at the distal (farther end) of the tibia as shown in the graphic below. In terms of position on the running length of a ski this places the center of rotation on the rear half of the ski. The implications are that the forebody of a ski will rotate more across a skier’s line than the tail of the ski. In my foot, the center of rotation is approximately 12 cm behind the running center of the ski.
The femur has a typical range of rotation of 45 degrees in each direction (total ROM 90 degrees); 45 degrees medial (towards the transverse center of the body) and 45 degrees lateral (away from the transverse center of the body). 

If rotational effort is applied to the foot against a firm vertical surface the rear foot will be forced away from the surface.

The implications for skiing are that as the platform angle of a ski with the plane of the snow increases towards perpendicular (normal) to the slope the turning effort applied to the feet will direct the forebody into the surface of the snow. As a reader commented on a previous post on platform angle mechanics the tips (shovel or forebody) of the ski leads the charge. A carved turn starts at the tip with the edges engaging and cutting a step into the snow for the portion of the edge that follow to track in. The shovel leads the charge and starts the carving action. 

Mechanical Points of Force 

A final point for this post is the two key mechanical points where loads on the foot apply high force to the platform; one under the ball of the great toe (i.e. head of the first metatarsal) and the other under the heel in an area called the tuber calcaneum. These are the primary centres of force in skiing. 

The effect of any rotational force or steering to a ski is significantly affected in the carving or loading phase by where the center of force is located. This will be the subject of my next post.

THE 2018 SOELDEN GS: A LITMUS TEST OF DYNAMIC STABILITY – WILD CARD RESULTS

I found the wild card result in the skate tests discussed in my last post shocking but not unexpected. I had known for decades that ski boots can dramatically impact user performance. But until the skate tests I had no way of confirming my subjective observations, which could be summarily dismissed as nothing more than my opinion. The results of the skate test provided convincing support for my long held assertion that testing the effect of ski boots on the user with a set of realistic performance metrics is absolutely essential.

In the graph below of Peak Force all 5 competitive skaters improved in the NS.

Skater number four went from the skater with lowest Peak Force to the skater with the highest Peak Force. But skater number one, who had the fourth highest Peak Force in their OS, hardly saw any improvement in the NS whereas skater number four realized over a 100% increase in Peak Force!But the real shocker was in Impulse Force. As expected, results varied. But the Impulse Force of skater number one actually decreased slightly in the NS!Without a standardized, validated test protocol there is no way of knowing how their ski boots affected the performance of the competitors in the Soelden GS or any race for that matter. Guessing should not be acceptable.

SKI BOOTS: WHY LESS IS MORE

At the time I filed an application for my second patent in April of 1989 , I had some ideas of what a ski boot should do for the user from what I had learned from the dorsal containment system I was granted a patent for in 1983. But I was still a long way from being able to answer the question.

A watershed moment came for me in 1990 when I read a medical textbook published in 1989 called The Shoe in Sport on what is referred to in the text as ‘the shoe problem’.

The Shoe in Sport, supported by the Orthopedic/Traumatologic Society for Sports Medicine, was originally published in German in 1987 as Der Schuh im Sport. The textbook is a compilation of the collective efforts of 44 international experts, including Professor Peter Cavanagh, Director of the Center for Locomotion Studies at Penn State University, biomechanics experts from the Biomechanical Laboratories at ETH Zurich and the University of Calgary, Professor Dr. M. Pfeiffer of the Institute for Athletic Sciences at the University of Salzburg, Dr. A. Vogel of the Ski Research Syndicate, Dr. W. Hauser and P. Schaff of the Technical Surveillance Association Munich and many other experts in orthopedic and sportsmedicine on  ‘the shoe problem’.

The buyers of athletic shoes are always looking for the “ideal shoe”. They encounter a bewildering variety of options and are largely dependent for information on the more or less aggressive sales pitches that directed at all athletes in all possible ways. (1.)

This volume should assist in defining the role and the contributions of science in the further development of the athletic shoe and in the recognizing of the contributions made by the various research groups, who are all interested in the problems of the athletic shoe. (1.)

Dazzled by the fancy names, the buyers believe that they can match the athletic performance of the champion who wears “that shoe,” or after whom the shoe is named. The choice is not made easier by the plethora of promises and a roster of specific advantages, most of which the merchant cannot even explain. (2.)

When The Shoe in Sport was first published in 1987, the field of biomechanics was in its infancy as was the associated terminology. This created an opportunity for a new marketing narrative of techno buzzwords. Since the consumer had no way to understand, let alone assess, the validity of any claims,  the only limits to claims made for performance was the imagination of the marketers. Consumers were increasingly bombarded with features that far from recognising the human foot as a masterpiece of engineering and a work of art as espoused by Leonardo da Vinci, suggested the human foot is seriously flawed and in need of support even for mundane day-to-day activities. These marketing messages distract attention away from the real problem, the design and construction of shoes and their negative effect on the function of the user; the modern ski boot being one of the worst examples.

The Shoe Problem

For this reason, the “shoe problem”as it exists in the various fields of athletic endeavour, will be studied with respect to the biomechanical, medical , and technical aspects of shoemaking. The findings (criteria) should enable the interested reader to distinguish between hucksterism and humbug on the one side and the scientifically sound improvements in the athletic shoe on the other. (1.)

Form follows Human Function

The Shoe in Sport focusses on the medical orthopedic criteria in offering guidelines for the design of shoes for specific athletic activities including skiing and ice skating.

Less attention will be paid to the technical and material aspects of the running surface and shoe, and more to the medical and orthopedic criteria for the (design of) athletic shoe. For this reason, the “shoe problem”as it exists in the various fields of athletic endeavour, will be studied with respect to the biomechanical, medical , and technical aspects of shoemaking. 

This volume should assist in defining the role and the contributions of science in the further development of the athletic shoe and in the recognizing of the contributions made by the various research groups, who are all interested in the problems of the athletic shoe.

Barefoot as the Reference Standard

Research done at the Human Performance Laboratory at the University of Calgary found that optimal human performance is produced with the unshod foot and that human performance is compromised by the degree of interference; the greater the interference caused by any structure appended to the foot, the greater the compromise of performance. This is true even for a thin sock.

The authors of The Shoe in Sport ask:

Is there really a need for shoes? The examples of athletes like Zola Budd and Abebe Bikila suggest in a technologic environment the evolution of the athletic shoe parallels the decline of our organs of locomotion. (1.)

The Future of the Ski Boot

The shoe affects the athlete’s performance and serves to support the foot as a tool, as a shock absorber, and as a launching pad. Giving serious consideration to our organs of locomotion opens up an enormous area of activity to the athletic shoe industry. (1.)

This is especially true of the ski boot. The questions that needs to be asked is how does the structure of the ski boot affect the human performance of skier and what is the minimal combination of structure that will enable maximum skier performance.

Few forms of athletics place as high demands on the footwear used in their performance as alpine skiing. It (the ski boot) functions as a connecting link between the binding and the body and performs a series of difficult complex tasks. (3.)

Before the question of what structure of a ski boot will maximize skier performance can be answered, the functional mode of the human system in the complex physical environment associated with skiing must be known. The first and most important and fundamantal component of this question is explaining the mechanism by which the human system is able to achieve a state of balance on the outside ski characterized by neuromuscular control of torques in all 3 planes across the joints of the lower limb and pelvis.


  1. Introduction by Dr. med. B. Segesser, Prof. Dr. med. W. Pforringer
  2. 2. Specific Running Injuries and Complaints Related to Excessive Loads – Medical Criteria of the Running Shoe by Dr. med. N. L. Becker – Orthopedic Surgeon
  3. Ski-Specific Injuries and Overload Problems – Orthopedic Design of the Ski Boot –  Dr. med. H.W. Bar, Orthopedics-Sportsmedicine, member of GOTS, Murnau, West Germany

WHAT SHOULD A SKI BOOT DO?

After Steve Podborski won the 1981-82 World Cup Downhill title using a revolutionary dorsal fit technology I developed for his ski boots in June of 1980, he proposed that we become partners in a venture to develop a new ski boot that would do for every skier what the dorsal fit system had done for him. In exchange for my creative efforts, Podborski would fund the venture up to a point after which we would try to raise funds from investors for the project.

If I accepted Podborski’s proposal (which I eventually did), I knew the we faced significant hurdles. After giving the proposal a lot of thought, I accepted Steve’s offer. Steve and I became partners in a company called MACPOD Enterprises Ltd. While I had identified some of the pieces of the puzzle, I didn’t yet know the answer to the question what a ski boot should do. But I knew that when the time came to raise money I would need to provide investors with convincing evidence that I knew the answer to this question.

Podborski’s success lent credibility to the project. But his credibility was based on his subjective assessment supported by his race results. To be credible, a ski boot design based on principles of science would need to be supported with data from actual skiing maneuvers that could generate meaningful, quantifiable metrics for such things as balance and ski control. When the metrics were compared to the same metrics from data captured from the same skiers using conventional ski boots, they would need to unequivocally demonstrate superior performance of the MACPOD ski boot. I had to come up with a format that would satisfy potential investors that the new ski boot MACPOD would develop would be at least as good, if not better, than the system Podborski used to win the 1981-81 World Cup Downhill title. Whatever format I came up with had to be capable of allowing investors who skied to ski in it.

In 1992, MACPOD raised money from investors to fund the first phase of the venture. The pressure was on.

The single variable assessment protocol

The factor that convinced Podborski of the merits of my dorsal fit system was the comparison test he did against identical Lange boot shells fit with conventional Lange liners.

After rupturing his ACL testing skis at the end of July in 1980 Steve went to France 2 weeks before the opening downhill race of the 1980-81 World Cup season at Val d’isere to be with the team to support them. He had not planned on skiing, let alone racing, because he had been told by his doctors he was out of commission for the 1980-81 World Cup Downhill season. But Podborski had brought 2 pair of identical Lange boot shells to France with him just in case. One pair had the untested dorsal fit system with only the upper cuff of a Lange liner mounted on the boot shaft. The other pair had conventional Lange liners.  The only difference between the boots was the fit system; the classic single variable assessment protocol.

The graphic below from my US Patent shows a conventional tongue format (20) in FIG 3 (prior art) compared to my dorsal fit system (30) in FIG 5. The shin component (31) is like a conventional tongue.

On a whim, Podborski decided to see if he could ski in the boots with the dorsal fit system. He was amazed to find that he could ski well with little pain in his partially healed, reconstructed ACL. But when he tried to ski in the boots with the conventional liner he could barely ski.  I found this interesting because the impetus for the new fit system was my hypothesis that dorsal loading of the bones of the midfoot might reduce strain on the knee by dampening decompression of the arches resulting from perturbations in ground reaction force due to asperities and undulating terrain. A conventional liner could not be used because it would have interfered with the interface of the lower shell overlap closure on the upper surface of the dorsal fit system required to apply force to it. Fig 9 below from the patent shows how the overlap of the shell applies force to the upper surface of the dorsal fit system. The buckle closures allow the force, which should be minimal, to be regulated.

The ability to compare the dorsal fit system against a conventional liner system on the same day and in same conditions made the superiority of the dorsal fit system apparent. The unprecedented improvement in performance with no run-in period or special training program strongly suggested that the improvement resulted from reducing factors in conventional ski boots that limit or degrade human performance. This experience caused me to undertake a critical analysis of the functional requirements of the human system for skiing. This exercise opened the door to the possibility of technologies that would integrate external appendages such as skis and skate blades with the human system, what I later came to term Bio-Integration.

Bio-Engineering

If structures of ski boots, ice skates and cycling shoes can limit or degrade the human performance of the user it also became apparent to me that it might be possible to modify the function of the feet and lower limbs that would make it specific to activities such as skiing, skating or cycling and even potentiate neuromuscular function. I termed this concept Bio-Engineering. I didn’t realize until 1991 that the dorsal fit system used principles of Bio-Engineering.

The graphic below is the pressure image of the right foot of an elite cyclist showing the forces applied by the foot to the sole of the shoe on the pedal spindle at 3 o’clock in the stroke sequence at a low cadence with a moderate to high load on the crank. The cyclist is wearing a conventional rigid sole cycling shoe with no arch supports, wedges or other accessories.

Red is highest force. Dark blue is the lowest force. Forces were recorded with a Tekscan F Scan system fit to the shoe.

The highest force is applied under the ball of the great toe and the great toe and to a lesser extent, the second, third and fourth toes. The dashed line shows the approximate location of the pedal spindle which is the source of resistance/reaction  force. This pressure pattern is typical of elite cyclists. Ideally, the highest force should be applied across the width of the pedal spindle by the heads of all five metatarsals. Note that aside from the high pressure patterns on the ball of the foot and toes 1 through 4 the pattern is diffuse across the heads of metatarsals 2 through 5 and under the heel.


In my next post, I will show a pressure pattern of the same foot in the same position with a technology that Bio Engineers the foot and lower limbs and discuss the significant differences.

IN THE BEGINNING: HOW I GOT STARTED IN SKI BOOT MODIFICATIONS

I originally published this post on May 12, 2013. This is a revised and edited version.


Before I started ‘tinkering’ with ski boots in 1973, I didn’t just read everything I could find on the subject of fitting boots, I devoured every bit of information I could find on the subject. The assumption I made at that time was that the experts in the field not only knew what they were talking about, but that they also had the requisite knowledge and understanding of the underlying principles to back up their positions with applied science and/or research. Based on this assumption, I started modifying ski boots by doing all the things the experts recommended such as padding the ankle to ‘support’ and ‘stabilize’ it in the boot shell and cuff and adding cants between the soles of the boots and the skis to make the skis sit flat on the snow. But the big breakthrough for me came when I started making footbeds to support the foot.

Within a year I had gained expertise in my craft to the point that skiers from all over Canada were starting to seek out my services. In  response, I started a company called Anatomic Concepts. Soon, I was spending most of my free time working on ski boots. But while I was helping a lot of skiers ski better, none of what I was learning or doing was helping my own skiing. I was still struggling after switching from low-cut leather boots to the new stiff, all plastic boots.

The (Un)Holy Grail

Despite the inability to solve my own problems, my thinking remained aligned with conventional thinking right up until my experience with Mur and the ‘Holy Grail’ of ski boots; the perfect fit of the boot with the foot and leg of the skier.

In 1977, Roger McCarthy (head of the Whistler Ski Patrol), whose boots I had worked, on introduced me to Nancy Greene Raine in the Roundhouse on top of Whistler Mountain. The timing was perfect. Racers on our National Ski Team were having boot problems. They needed help. It was a classic case of me being in the right place at the right time. Nancy recruited me, flew me to Calgary at her expense and introduced me to the National Team and Dave Murray. She set up a working arrangement with the team, one in which I was completely independent. Nancy also introduced me to Glen Wurtele, head coach of the BC Ski Team. At Wurtele’s request, I began working on the boots of members of the team.

I started working on the boots of NAST (National Alpine Ski Team) racers with Dave Murray; ‘Mur’ as he was affectionately known. My thinking at that time vis-a-vis the need to immobilize the foot and achieve a ‘perfect fit’ of the boot with the foot was aligned with the approach of the  ‘experts’ in the  field. Mur didn’t live far from me. When I was working on his boots, he seemed to spend more time at our home than his. Because of my ready access to Mur, I saw an opportunity to achieve the Holy Grail of skiing with a fit of the boot with the foot so perfect that the foot was for all intents and purposes rendered rigid and immobile and united with the structures of the ski boot.

To achieve this lofty goal I spent the better part of 2 weeks working for hours every night carefully crafting a matrix of heat formable 1 mm thick vinyl around Mur’s foot and leg and the shells of his boots with my inserts inside the liners of the boot. When Mur finally confirmed he was ‘loaded, locked and ready’ he went skiing to test the results. I waited for the inevitable confirmation of success and certain celebration that would follow. But after what seemed like an eternity, instead of the expected good news, Mur called to tell me that he could barely ski with my perfect fit. He had little or no balance or control. The Holy Grail had reduced a world class skier to a struggling beginner. I didn’t need to be a rocket scientist to know that the industry had to be way off track especially in view of the recent publication of Professor Verne T. Inman’s seminal book, The Joints of the Ankle.

After this experience I knew that there was way more going on than I understood. I started learning about human physiology, in particular, about the mechanics, neuralbiomechanics and physics of skiing. I started asking hard questions that no one in the industry seemed to have answers for. And I started going off in a very different direction from the one the industry was acquiring increasing momentum in. If the perfect fit could impose what amounts to a severe disability on one of the world’s best skiers I could only imagine what such indiscriminate constraint was doing to the average recreational skier. It could not be good. For me it certainly wasn’t.

A major turning point came for me in 1988 when a husband and wife radiology team who had heard about my efforts to try and develop a ski boot based on anatomical principles presented me with a copy of a medical text called The Shoe in Sport published in German in 1987. This seminal work contains an entire chapter dedicated to The Ski Boot. I discuss the issues raised about the design and fabrication of ski boots by international experts in the articles in chapter on The Ski Boot in my most viewed post to date; THE SHOCKING TRUTH ABOUT POWER STRAPS (1.)

The Root of Misinformation

Unfortunately for skiing, the relevance and significance of the knowledge contained in The Shoe in Sport was overshadowed by the publication in 1971 of the book, the Biomechanical Examination of the Foot, Volume 1 by Drs. Merton Root, William Orien, John Weed and Robert Hughes. The book lists what the authors call their “Eight Biophysical Criteria for Normalcy”. These criteria, which have since been challenged and shown to be largely invalid,  were claimed to represent the “ideal physical relationship of the boney segments of the foot and leg for the production of maximum efficiency during static stance or locomotion”.

A key component of the biophysical criteria was that a bisection  of the lower third of the leg be perpendicular to the ground and the subtalar joint rest in neutral. Root described neutral as occuring when the subtalar joint was neither supinated or pronated.

In order to be considered normal, a foot had to meet all eight biophysical criteria. The effect of this criteria, which was arbitrary, was to render the majority of the feet of the world’s population abnormal and candidates for corrective interventions. Although Root never stated, implied or suggested it, his neutral sub-talar theory appears to have been misinterpretated in the ski industry to mean that the foot functions best in static ski stance when its joints are immobilized in neutral (sub talar).

In recent years, Root’s Sub-Talar Neutral Theory has come under increasing challenge with calls to discontinue its use (2.).

Conclusions
Taken as part of a wider body of evidence, the results of this study have profound implications for clinical foot health practice. We believe that the assessment protocol advocated by the Root model is no longer a suitable basis for professional practice. We recommend that clinicians stop using sub-talar neutral position during clinical assessments and stop assessing the non-weight bearing range of ankle dorsiflexion, first ray position and forefoot alignments and movement as a means of defining the associated foot deformities. The results question the relevance of the Root assessments in the prescription of foot orthoses.

The results of the wider body of evidence have the potential to have profound implications for skiing in terms of the application of Root’s Subtalar Neutral Theory as putting the foot in the most functional position for skiing by supporting and immobilizing it in neutral (subtalar).


  1. https://wp.me/p3vZhu-UB
  2. https://jfootankleres.biomedcentral.com/articles/10.1186/s13047-017-0189-2

ZEPPA-DELTA ANGLE EXTENDER

The problem associated with measuring boot board (zeppa) and/or binding (delta) ramp angle as individual components is that the resulting angle may not accurately reflect the actual angle between the plane of the base of the upper surface of the boot board and the base of the ski in the boot/binding/ski system. Boot boards of the same zeppa angle may not necessarily have the same zeppa angle with the base of the boot shell due to design and/or manufacturing variances.

A level inserted into a ski boot shell with the boot board in place can be difficult to read. With the liner in place, this is not a viable option. A better option is to extend the angle of the boot board up above the top of the shaft of the boot so it can be accurately and easily read.

A simple device for this purpose can be made for about $25 with basic hand tools and a few screws using 2 – 8 in (20 cm) x 12 in (30 cm) x 1/8 in (3 mm) thick steel carpenter’s squares.

Place the long arms of the squares over each other as shown in the photo below and clamp them securely together. Two-sided tape can be used to help secure the alignment. Then drill a hole  at one point on the vertical leg and screw the 2 squares together.

Check the parallelness of the 2 opposite arms on a level surface with a digital level. If good, secure the 2 levels together with a second screw. Then affix a section of 3/4 in (2 cm) x 3/4 in (2 cm) square or L-bar bar on the top of the extender to rest the level on.

To use the extender, place a boot shell on a hard, flat, level surface. If the surface is not level it should be leveled before the extender is used.

The photo below shows the extender being used to measure the zeppa angle of an old Salomon SX-90 shell. I didn’t have the electronic level for the photo. So I used a small torpedo level.

Insert the lower arm of the device into the shell as shown in the right hand image and place the lower arm firmly on the boot board. Place the level on the top arm and read the angle.

The photo below shows the same process as above. But in this example, the liner is in place. If an insole is in the liner, it should be flat with no arch form. I highlighted the square bar with pink to make it easily visible.

A check of the zeppa-delta angle of the boot-binding-ski system can be done by mounting the boot in the binding of the ski that is part of the system and clamping the ski to a flat surface with sufficient force to ensure the camber is removed and the running surface of the base is in full contact with the supporting surface. A strap wrapped over the front of the boot shell and under and around the supporting surface then tensioned will help ensure that the toe plate of the binding is loaded.

The Zeppa-Delta Angle Extender provides the user with a fast accurate way to know their total number. What’s yours?