Author: skikinetics

Inventor of a science and associated technologies that leverage human performance in specialized activities such as skiing, skating and cycling. Nominated in 1995 for the Gold Medal in the categories of Applied Science & Engineering in the British Columbia Science Awards for discovering and articulating the process and the conditions under which the human lower limbs and balance system can negotiate a balance solution through the stack of equipment that resides between the sole of the foot of a skier and the snow surface.

WHY THOMAS DRESSEN WON AT GARMISCH

In watching the Men’s Downhill at Garmisch on February 1, 2020 it was immediately obvious to me that most racers had their shaft buckles and especially their power straps on their boots far too tight and this was restricting the ankle flexion needed to absorb terrain changes and perturbations in the snow surface. It was painful to watch talented athletes ski so badly. The pleasant exception was Thomas Dressen.

In the 1980-81 World Cup Season Steve Podborksi won at Garmisch using a dorsal technology that maintained the position of his forefoot on the base of his boot without obstructing the forward movement of the shank of his leg that occurs relative to the dorsum of his foot during ankle flexion. Podborski won Garmisch again in 1982 and 1984 in what is called the Garmisch Trifecta. Only one other racer has ever done this.

Podborski is still the only non European to have ever won the World Cup Downhill title. Forty years after I invented and patented the dorsal restraint technology that enabled Podborski to compete and win on the most difficult downhill courses in the world with a partially healed reconstructed ACL If anything ski boots have gotten worse in terms of compromising ankle flexion and racer balance.

Reading my post The Shocking Truth about Power Straps is a good start. But you have to actually apply the principles as it seems Thomas Dressen did at Garmisch.

WILL SKIING SURVIVE?

In an October 1997 Skiing Trade News article Jerry Groswold, a ski area consultant and former president of Winter Park Park Resort, talked about the message in a presentation by former Dallas Cowboy quarterback Roger Staubach. Staubach’s presentation was to a non-ski audience. But Groswold saw how it applied to the situation emerging in the ski industry. 

Staubach spoke about gatherers and sharers. He characterized gatherers as those who take for themselves and sharers as those who work for the common good. Staubach expressed concerns about those gatherers whom he referred to as “destructive achievers”; those who, for whatever reason, feel compelled to acquire at all cost. Groswold expressed the fear that the impact of “destructive achievers” was starting to be seen in the ski industry.

More than 20 years ago Groswold saw the ski industry standing at a crossroad. He cautioned that too many people had worked too long and hard to build the sport to allow it to fall prey to Staubachs’ “destructive achievers”. Groswold warned that only by remembering its roots – that skiing is a sport first, a passion second and a business third – will skiing succeed. 

A new Youtube video (1.), Why ski resorts are dying – Cheddar explains, paints a picture that suggests Groswolds fears are coming to pass.

Skiing is the quintessential winter pastime. But recently, the multi-billion dollar industry is in decline. The number of skiers is falling fast and the industry is scrambling to make up the difference. Is this going to be the end of the ski resort?

When I started skiing in 1970 the sport was entering a period of vigorous growth. The introduction of the safety release binding followed by the rigid plastic ski boot that promised to give every skier the edge, had begun to attract gatherers who saw an opportunity to profit from the next big thing. The ability to mass market the Perfect Fit that the rigid ski boot made possible was the Perfect Marketing Story. With ski boots that were individually Perfectly Fit to every skier any problems with ski technique could be claimed to be a skier problem requiring lessons.  There is no reason for a gatherer to question, let alone critically examine, the Perfect Fit story. There is even less reason for a gatherer to invest in research to find ways to make skiing easier. That the Perfect Fit story sells product and services appears to be the only thing that matters.

Those who have been able to apply some of the concepts described in my blog have found that skiing can be as easy and intuitive as walking. 

The Birdcage research vehicle that resulted out of more ten years of effort on my part whose principles were validated with on-snow studies done in 1992 had the potential to make skiing as easy and intuitive as walking. Today, the refinement of the Perfect Fit has made ski boots all but impossible to sufficiently modify to accommodate end user function.

Whether skiing survives depends on whether skiers will retake their sport from the gatherers.


  1. https://youtu.be/AVSjsYHX6eM

For his immense contributions to the sport,Groswold was enshrined in the U.S. Ski & Snowboard Hall of Fame in 1986, the Colorado Ski & Snowboard Hall of Fame in 1987, the Colorado Ski Business Hall of Fame in 2005 and received countless other awards. 

CHANGES COMING T0 THE MANIFESTO

In a few days, my blog will start to include advertisements. The reason for this is that I have decided to take a break and not renew my subscription for the premium plan that eliminates advertisements. The blog will continue to exist. At some point I may renew my subscription to the  premium plan.

The most important posts I have ever published are the series on The Mechanics Patform Angle and The Future of the Ski Boot Parts 1 and 2. For reasons that aren’t clear to me the ski industry has never done a comprehensive analysis of the forces acting between the outside ski and snow that create a platform that skiers can stand and balance on. Instead a simplistic and incomplete explanation was put forth that viewed balance in terms of opposing vertical forces missing the most important forces, horizontal forces into the hill parallel to the base of the outside ski and multi-plane torques. Unfortunately this seriously flawed explanation gained wide acceptance.

The ski industry also failed to recognize that FIT equates with DYSFUNCTION especially impaired neuromuscular function. I went into detail in this in Part 2 of The Future of the Ski Boot.

The forces associated with The Mechanics Patform Angle are not simple. They are all described in my posts for those willing to invest the time and effort to gain an understanding. But there is no shortcut. Either you understand all aspects or you understand nothing.

Skiing can and should be as easy and intuitive as walking. That it isn’t is the failure of the ski industry,not the failure of the skier.

THE FUTURE OF THE SKI BOOT – PART 2

The introduction of the rigid shell ski boot served as a foundation for the evolution of what became a science of immobilization and splinting of the joints of the foot and a leg of a skier. By creating an encasement for the foot and the portion of the leg within the rigid shell, mediums such as foam could transfer force to the ankle and leg to substantially immobilize its joints. Supporting the foot in a neutral position with a rigid footbed or orthotic in conjunction with form fitting mediums ensures maximal immobilization that is described as the Perfect Fit. The science of immobilization has evolved over the years to include thermoformable liners and even thermoformable shells.

Even though the medical textbook, The Shoe in Sport, cautioned 30 years ago that “the total immobilization by foam injection or compression by tight buckles are unphysiologic (against physiologic function)” the proponents of immobilizing the joints of the ankle continue to claim that this puts the foot in it’s strongest position for skiing.

The paper, Recent Kinematic and Kinetic Advances in Olympic Alpine Skiing: Pyeongchang and Beyond,  published on February 20, 2019, cited better transfer of the skier’s action to the skis through improved boot-fittings with individual liners and insoles. If in fact, skier performance is improved due to improvements in the science of immobilization through boot-fitting then it should be evident in studies that look at skier performance.

One such study, Challenges of talent development in alpine ski racing: a narrative review, published in March of 2019 found:

Youth and adolescent ski racers report lower injury rates compared to World Cup athletes. The knee was the most affected body part in relation to traumatic injuries. The most frequently reported overuse injuries were knee pain (youth) and low back pain (adolescent level). Athlete-related modifiable risk factors were core strength, neuromuscular control, leg extension strength and limb asymmetries.

Neuromuscular Function (NMF) affects Neuromuscular control (NMC). NMC is an unconscious trained response of a muscle to a signal associated with dynamic joint stability. This system of sensory messages (sometimes referred to as “muscle memory”) is a complex interacting system connecting different aspects of muscle actions (static, dynamic, reactive), muscle contractions, coordination, stabilization, body posture and balance. The movements of the lower extremity, including the knee joint, are controlled through this system, which needs correct sensory information for accurate sequential coordination of controlled movement.

It has been known for decades that restricting the action of a joint or joint system, especially immobilizing the joint, will cause the associated muscles to atrophy. But a study, Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review, published in March 2019, suggests that the effects of immobilizing joints of the body are far greater than simply causing muscles to atrophy. This is the first systematic review to consider the contribution of both muscle atrophy and deterioration in neuromuscular function (NMF) to the loss of isometric muscle strength following immobilisation. The fact that the study, Challenges of talent development in alpine ski racing: a narrative review, cited core strength and neuromuscular control as issues in the development of talent is significant. The feet are part of the core in what is called foot to core sequencing. Immobilizing the joints of the foot can affect lower limb and core strength.

Immobilisation in the study the Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review, was achieved by using casts, braces, slings, unilateral suspension, strapping or splints with the following locations immobilised: knee, ankle, wrist and finger. All studies measured isometric muscle strength. No studies were cited that involved bilateral immobilisation of both ankles such as occurs in form-fitting ski boots. However studies did find that multiple joint immobilisation was likely to produce the largest change in the NMF of segments consisting of both mono and biarticular muscles. Other key findings were:

  • The greatest changes in all variables occur in the earliest stages of immobilisation.
  • The loss in muscle strength during immobilisation is typically greater and occurs faster compared to the loss of muscle volume.
  • The choice of joint angle for immobilisation using the brace or cast method appears likely to play a large role in the outcomes.

I started this blog six years ago for several reasons. A primary reason was to identify whether any influences existed in skiing that would serve to change the focus from immobilizing the joints of the foot and leg with the associated claims to a science-based focus. Since the future of the ski boot appears to be continued refinement of the science of immobilization this will be my final post.

I have learned a lot over the past six years that led to huge breakthroughs on skis for myself and those who I have worked with. Thank you to those who commented and contributed to The Skier’s Manifesto.

THE FUTURE OF THE SKI BOOT – PART 1

SHOEspiracy, a new feet-first documentary by barefoot/minimal shoe maker Vivobarefoot (1.) provided me with insights on the factors behind the unproven theory on which the design and modification of the rigid plastic ski boot is based that supporting and immobilizing the foot of a skier in neutral places it in the strongest position for skiing.

The intent of SHOEspiracy is to shed light on what amounts to a  ‘Shoe-shaped’ Public Health Scandal’.

There is a 20 billion pair a year, silent public health scandal a’foot and it’s shoe shaped!

It’s astonishing to us that the vast majority of shoes produced each year are actually bad for people’s feet—and the wearers are none the wiser.

VIVOBAREFOOT co-founder Galahad Clark

According to the documentary SHOEspiracy is intended to inspire viewers to reconnect with their feet and create a drive within the multi-billion-dollar footwear industry to establish a template for healthy shoes, healthy feet and natural movement. Most people are blissfully unaware of the problems footwear can and does cause and assume that what they put on their feet is benign.

I commend Galahad and Asher Clark and Vivobarefoot for taking the initiative to educate consumers on the problems shoes can and do cause and to establish a template for shoes that respect and accommodate the physiologic requirements of the user.

From Function to Fashion

At one time all humans were barefoot. This changed about 40,000 years ago when humans began to wrap animal skins around their feet to protect them against damage from the elements.  From crude beginnings as nondescript forms of protection, footwear evolved into a fashion entity; one that changed the shape and appearance of the foot, often radically, to render it more aesthetically pleasing. Heels first appeared in horsemen’s shoes as a device to help keep the rider’s feet in the stirrups.

As the evolution progressed shoes became corrective and lifestyle devices in addition to fashion accessories. In the footwear fashion era people have historically worn shoes that deformed their feet, the Chinese Lotus shoe  being an extreme example. But since a degree of deformation does not typically result in a noticeable impact on low-key locomotion the negative impact of restrictive footwear has generally flown under the radar unnoticed.  Adverse effects due to footwear such as joint and muscle pains and impaired balance are usually attributed to other factors.

Young feet are especially malleable. Their shape can be molded by footwear often resulting in permanent deformity as mine were when as a child my feet were put in orthopedically correct, supportive footwear to help them develop properly. The recent photos below show the state of my feet after more than 5 years of wearing exclusively minimal shoes, doing exercises like the short foot and using NABOSO insoles. Although they have become much stronger and healthier, it is doubtful whether the damage done when I was a child can ever be undone.

The left hand photo shows my feet with forefoot minimally weighted. The right hand photo shows my feet weighted. Note the difference in the robustness of the big toe of my left foot compared to the big toe of my right foot. I believe this at least partially explains why I am able to stand and balance with superior stability on my left foot compared to my right foot.

The photos below serve to graphically illustrate why I gave up road biking several years ago and now ride a touring bike with large flat platform pedals and minimal shoes fit with NABOSO insoles. As my feet became stronger and more functional I was no longer willing to abuse them with constrictive footwear.

The Jogging/Ski Boot Connection

About 50 years ago a new type of shoe appeared; one that would revolutionize the footwear market. The Sports Shoe was created in response to the running boom of the 1970’s. When I took up running on the cusp of the running boom, runners of the day ran in flats made for tennis or basketball. These were plain canvas shoes with no heel toe drop or special features.

Jogging, published in 1967 by Nike cofounder, William J. Bowerman, served as a catalyst for the running boom that emerged in the 1970s and with it the development of jogging and other sports footwear including plastic ski boots. At the time that he wrote Jogging Bowerman was working with elite runners looking for ways to improve their performance. His book was preceded by the introduction of the first Lange ski boot in 1962 followed by a racing model in 1965.

People who took up jogging who hadn’t run before started having problems with their Achilles tendon and calf muscles because their everyday shoes had heels. After consulting with doctors Bowerman made a decision to raise the heel of his jogging shoes by 1/2” (12 mm) to accommodate people who wore dress shoes. This feature was for the general public, not the athlete. Bowerman recognized that the sports footwear industry needed to create a consumer product that could be worn without causing discomfort. In an attempt to address problems caused by raising the heel the sports shoe industry responded by adding counters, arch supports and other features; in effect adding band aids in an effort to correct problems caused by raising the heel.

When the Nike Waffle Trainer was marketed as a shoe designed specifically for jogging the idea of sport specific shoes initially made sense to me. But even though I had been running with a heel strike technique in flats I experienced problems right away with ankle and knee shock at heel strike in my Nike Waffle Trainers. In comparing the Nike shoe to my canvas flats it became obvious to me that the flared heel was adversely altering the mechanics of heel strike. Trimming away the outer (lateral) and rear aspects of the flared heel reduced the shock of impact at heel strike.  I suspected that other aspects of the shoe were also adversely affecting my running mechanics. This incident caused me to question whether the design of sport specific shoes was supported by science.

When I started looking for answers I found out that it had been known for decades that footwear can negatively impact the physiologic function of the user. But the issue of the effect of footwear on athletic performance came into sharp focus in 1989 with the publication of the medical textbook, The Shoe in Sport (published German in 1987 as Der Schu im Sport). The Shoe in Sport brought together the collective expertise of 44 international authorities on orthopedics and biomechanics to focus their attention on the SHOE PROBLEM in the context of problems shoes can cause for athletes that compromise performance and contribute to injury. The Shoe in Sport focusses on the medical and orthopedic criteria of sports shoes in offering guidelines for the design of shoes for specific athletic activities including skiing and ice skating. The efforts of the Shoe in Sport was supported by the Orthopedic/Traumatologic Society.

In the Introduction to the Shoe in Sport, Dr. med. B. Segesser and Prof. Dr. med. W, Pforringer note that the buyers of athletic shoes are always looking for the ideal shoe. In their search for the ideal shoe they encounter a bewildering variety of options and are largely dependent for information on the more or less aggressive sales pitches directed at athletes from every angle.

Segesser and Pforrineger go on to state that the findings in the textbook should enable the interested reader to distinguish between hucksterism and humbug on the one side and scientifically sound improvements in the athletic shoe on the other. The Shoe in Sport makes it abundantly clear that it is not a question of if the structures of footwear will affect the physiologic function of the user but a question of how they will affect the physiologic function of the user and especially whether the footwear will compromise athletic performance and/or contribute to injury. The Shoe in Sport studies the biomechanical, medical and technical aspects of the shoe problem as it exists in various fields of athletic endeavour.

A number of leading footwear company executives have often said to me over the years that they know science and agree with the philosophy behind the benefits of barefoot shoes, but that consumers aren’t ready. – Galahad Clark

Clark’s statement seems to suggest that little has changed since the publication of The Shoe in Sport in 1987 and the subsequent publication of Nigg’s Biomechanics of Sports Shoes in 2010. One reason may be the difficultly in conducting objective studies that lead to definitive conclusions pertaining to effects on the user of specific features of footwear.

After I learned of the research done by Benno Nigg at the Human Performance Laboratory at the University of Calgary that found that anything appended to the human foot compromises physiologic function I set out to develop a minimal constraint device for rigid soled footwear such as hockey skates, ski boots, cycling shoes and the like that would create a functional environment equivalent to barefoot. Activities that employ rigid soled footwear are much easier to conduct in vitro and in vivo studies than other activities. The objective of the device I wanted to develop was to enable the study of the effects of interfering with the action of discrete joints or joint systems of test subjects by controlling variables against a standard reference. In 1991, I succeeded in developing such a device in a corroborative effort with a biomedical engineer. The device can be constructed at minimal cost and readily fit with instrumentation to capture performance data.

When I wrote my US patent 5,265,350 at the beginning of 1992 I described the research device in impeccable detail with the intent and hope that others would construct the device and conduct studies with it. Under the terms of a patent, research may be conducted using a technology for which patents are pending or granted without infringing. This meant that research vehicle could have been constructed and studies commenced as soon as my patent application was published.

The graphic below shows the Birdcage research device on the left and Figure 1 from US patent 5,265,350 published on  February 22, 1993 on the right.

Form follows Function

The designation of the research device as Figure 1 in the patent is symbolic of the priority I give to function and science over other considerations.

The design and development strategies used by David MacPhail are very holistic in nature, placing the human system as the central and most critical component in the biomechanical system. His intent is to maximize human performance and efficiency, while foremost preserving the well-being and safety of the users and minimizing biomechanical compromises.  Alex Sochaniwskyj, P. Eng.

In US 5,265,350 and subsequent patents granted to me I disclosed a series of accessories for use with the research device. I designed these  to enable the effect on the user of factors such as the position of key mechanical points of the foot in relation to the mechanical points of a snow ski appended to it to be studied. To the best of my knowledge the minimal constraint research device and accessories has yet to be constructed and employed by other parties.

…………. to be continued.


  1.  https://www.shoespiracy.tv

FOOTBEDS: THE UNKNOWN COST OF SUPPORTING THE ARCH OF A SKIER’S FOOT

Two recent studies (1.), (2.) question the merits of supporting the arch of a skier’s foot and especially any claims made that supporting the arch in neutral is the strongest position for skiing. 

It is well established in the scientific literature that the plantar aponeurosis (aka plantar fascia or PA) is one of the major arch-supporting structures of the human foot.  A positive correlation between Achilles tendon loading (ATF) and plantar fascia tension (PAF) has been reported. A study (3.) found that plantar aponeurosis forces (PAF) gradually increased during mid stance and peaked in late mid stance. The study found a good correlation between plantar aponeurosis tension (APF) and Achilles tendon force (ATF). The study concluded:

The plantar aponeurosis transmits large forces between the hindfoot and forefoot during the (mid) stance  phase of gait. The varying pattern of plantar aponeurosis force (PAF) and its relationship to Achilles tendon force (ATF) demonstrates the importance of analyzing the function of the plantar aponeurosis throughout the stance phase of the gait cycle rather than in a static standing position. – (my emphasis added in bold)

I discussed this in my post TRANSITIONING TO A HIGHER LEVEL OF SKIER PERFORMANCE.

The graphic below from Kevin Kirby’s Foot and Lower Extremity Biomechanics II:  Precision Intricast Newsletters, 1997-2002 illustrates how the position of COM in relation to the foot tensions the GS (gastroc-Soleus) compressing the arch which tensions the plantar aponeurosis ligament. I have added arrows to indicate PA strain Force F and Shear Force as well as Arch Compression Force.

The graphic below also from Kevin Kirby’s Foot and Lower Extremity Biomechanics II:  Precision Intricast Newsletters, 1997-2002 illustrates how the anterior (forward) advance of CoM in relation to the foot decreases rear foot loading (GRF-RF) and increases fore foot loading (GRF-FF). I have added a red dashed vertical line and a red triangle to show the approximate location of what would be what I term the tipping or pivot point where the foot would rock rearward and forward with a corresponding shift in CoM.

The two recent studies I referred to (1.), (2.) that question the merits of supporting the arch of a skier’s foot were actually done with subjects walking and running on flat and inclined surfaces. But the effect on arch compression is applicable to the effect of arch supports used in ski boots.

New Balance Minimus road MR00 shoes were provided to all participants to wear for testing (approx. weight 180 grams, zero heel-toe drop, no medial arch support and a uniform EVA midsole). Pockets filled with lead weights were affixed to the laces of both shoes in order to standardize foot weight across all shoe and insole conditions. The minimal shoe was chosen as a control condition in order to standardize non-insole effects as much as possible.

Two separate custom insoles were designed for each participant and fabricated by orthotic laboratory. The first insole was designed to restrict arch compression near-maximally compared to that during shod (barefoot) running (Full Arch Insole; FAI). The second insole was designed to restrict compression by approximately 50% during stance (Half Arch Insole; HAI). TO qualify for the study participants could not wear orthotics on a regular basis.

The study found:

The insert restricted maximum arch compression by approximately 70% when compared to unrestricted shod running and consequentially resulted in lower strain values throughout the entire stance phase. It should be noted that the PLF length only surpasses the estimated resting length between ~25%-80% of the stance phase in the insert condition (Fig 3). The negative strain values should be regarded as a slack PLF length, not as the PLF shortening beyond the resting length. 

The graphic below from the paper The Foot’s Arch and the Energetics of Human Locomotion shows the maximum arch compression of subjects shod barefoot (Shoe-only), with the Half Insole that restricted arch compression to 50% of the maximum amount and with the Full Insole that maximally restricted arch compression. The Full Insole is typical of insoles used to support the arch of a skiers’ foot.

 

The insoles had no effect on the metabolic cost of walking despite restricting ~80% of arch compression. 

In a personal communication with Sarah Stearne she advised me that the study didn’t measure muscle EMG activation with and without the insole but they did know that the ankle performed less positive (-8%) and negative (-10%) mechanical work when the insole was worn and that the ankle peak dorsiflexion moment was reduced (-7%). Based on the ankle moment and Achilles tendon moment arm data they calculated that there was ~6% less force in the Achilles tendon when the insole was worn.

Whilst several studies have acknowledged the elastic energy storage potential of the PLF, this ligament is primarily regarded for its role in providing integrity to the bony arch structure, and in supplying the rigidity required for the foot to function as a lever during propulsion (or skiing, my comment) 

This study confirms what I experienced in 1973 after I had full support custom orthotics made by a well known sports podiatrist. The orthotics felt comfortable standing on them and even walking. I experienced some discomfort when attempting to run with the orthotics in my jogging shoes. But when I tried skiing with them in my ski boots I felt as if my foot were floating on the top of the orthotic with little or no sensation of any force under my first MPJ.

Based on the results of two cited studies I believe there is no basis to assume that supporting the arch of a skier’s feet will have positive benefits or is without adverse consequences without first conducting comparative studies using standardized controlls (no insole, flat boot board) and established scientific protocols.


  1. The Foot’s Arch and the Energetics of Human Locomotion – Sarah M. Stearne1, Kirsty A. McDonald1, Jacqueline A. Alderson1, Ian North2, Charles E. Oxnard3 & Jonas Rubenson1,4 – (January 19, 2016)
  2. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running – Kirsty A. McDonald1, Sarah M. Stearne1, Jacqueline A. Alderson1, Ian North2, Neville J. Pires1, Jonas Rubenson1,3* – (April 7, 2016)
  3. Dynamic loading of the plantar aponeurosis in walking – Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA

THE FIRST SKI BOOT PROTOTYPE BASED ON THE BIRDCAGE

In going through archived files for the MACPOD Ski Boot Project I found a photo of the first injection molded ski boot prototype based on the principles of the Birdcage.

The photo below is of the Birdcage research vehicle that was used to validate my hypothesis that explained the mechanism by which elite skiers establish dynamic stability of the platform under the outside foot of a turn by balancing torques in two planes across the inside edge. This mechanism extends GRF acting along the running surface of the edge out under the platform for the skier to stand and balance on.

The photo below is of the Logan Chassis (aka The Convincer) that was developed in conjunction with the first injection molded ski boot prototype based on the principles of the Birdcage.

The photo below is of the first injection molded ski boot prototype. It was called the MACPOD boot. The design and format were very good. But the stiffness of the plastics, which were stiffer than used in conventional ski boots, was many orders too low on the scale of shore hardness. A subsequent effort called the Rise boot suffered from the same problem. It was a lack of suitable materials and manufacturing technologies that eventually sealed the fate of the MACPOD ski boot project.