NABOSO: FEEL THE FORCE


To Dr. Emily Splichal

In recognition of Dr. Emily Splichal’s contribution to my knowledge and through the knowledge gleaned from the use or her pioneering NABOSO surface science technology I am dedicating this post to her as my teacher, mentor and inspiration. Thank you Dr. Splichal.


In this post I am going to discuss how NABOSO surface science technology gave me the feedback mechanism to confirm the optimal ramp angle I needed to transition to a higher level of skier performance.

Optimal Ramp Angles starts with Stance Training

My transition started with refinements to my stance that came from incorporating Dr. Splichal’s principles of foot-to-core sequencing (that connects the feet with the pelvic core) and body fascial tensioning (that unifies the body). Prior to these changes my stance is what I would now define as good but not optimal. The huge improvement resulting from the refinements served as the impetus for a series of posts on the sequencing process required to assume a fascially tensioned stance with foot to core sequencing. I called this the SR Stance. The reason I chose this name was to draw reader attention to the stance posts by making the stance seem innovative, but not intimidating.

KIS is the Stance Kiss of Death

In reviewing material on ski technique, a skier’s stance is described as anything from an athletic stance, a relaxed stance, a ready stance, a balanced stance, a centered stance or a whatever feels good stance. A focus on selling skiing as easy with the KIS principle (Keep It Simple) has resulted in stance being perceived as less than critical to good technique. This leaves most skiers with the impression that a ski stance should feel similar to a relaxed upright stance on two feet with weight equally distributed between both feet and the heels and forefoot of each foot. This is interpreted by skiers as meaning they are balanced or in balance. So it follows that in actual skiing there should be even ‘pressure’ everywhere with no sensation of pressure on any specific area of the foot.

If I ask a typical skier to stand on a ramped surface and assume their ski stance they will find the sweet spot where their weight feels evenly distributed and identify it with their ski stance regardless of the  angle of the surface

So the first challenge to transitioning to a higher level of skier peformance is accepting that a strong ski stance must be learned and consistently rehearsed by doing drills as I do every time I go skiing. It’s like pre-flight check. NABOSO provide the conscious and subconscious CNS feedback that tells me when I am cleared for take off.

The NABOSO Effect

In my post NABOSO PROPRIOCEPTIVE STIMULATION INSOLES, I stated that the principle proprioceptive neural activity associated with balance responses occurs across the plantar plane. It is strongest in the 1st MPJ (big toe joint) and big toe. The fast acting small FA II nerves in this area are activated by pressure and skin stretch both of which occur in the late phase of Mid Stance. Optimal ramp angle is critical because it maximizes both pressure and skin stretch thereby potentiating the sensory input required to initiate controlled movement.

Assuming a NABOSO is trimmed, if necessary, to fit a shoe, there will be a positive effect on plantar proprioceptive stimulation. But my experience to date has been that the plantar proprioceptive stimulation will be much more pronounced in a minimal, zero drop shoe with adequate width for fascial forefoot tensioning and correct alignment of the big toe.

The big breakthrough for me came after I started using NABOSO insoles in shoes with different heel raises (drops). It turned out that I had the highest perception of  pressure under the ball of my foot in late mid stance phase with shoes with zero ramp (drop). When I put NABOSO insoles in my ski boots to test them I could hardly perceive any pressure under the ball of my outside foot during skiing no matter how I adjusted my stance or the tensions in my boot closures. This told me that my ramp angle of almost 3 degrees was far too great. As soon as I reduced the angle to 1.2 degrees (which is what I tested best at on my dynamic ramp angle device) it is no exaggeration to state the the whole world changed. But the transition effect didn’t kick into high gear until this ski season after my brain had time to delete a lot of the bad programming from the old ramp angle.

NABOSO 1.0 on the left. NABOSO 1.5 on the right. I use 1.5 in my ski boots. I purchase the large size and trim to fit.

Tentative Conclusions

  • A system that provides continuous subconscious sensory input to the CNS with the ability to consciously sense sensory input during drills in executive mode is important.
  • Stance training should be incorporated into racer training programs at an early stage and optimal stance ramp angle identified and implemented.
  • Once optimal ramp angle has been implemented the boot should be set up to the skier’s functional specification which I will discuss in future posts.
  • Stance ramp angle should be retested on a periodic basis to confirm the requirements have not changed.
  • Adjustments should be made as soon as possible after the end of a competitive season and no further changes made during the subsequent competitive season.

In my next post I will discuss Dr. Splichal’s protocol for using NABOSO insoles and matts in training.


Disclosure

I am not involved in any form of business association or affiliation or any have business interest or investment with Dr. Splichal/NABOSO/EBFA. Nor do I receive any form of compensation from the sale of NABOSO. Prior to marketing her NABOSO insoles Dr. Splichal provided me with a small sample of NABOSO material at her cost to cut insoles from for testing.

 

 

2 comments

  1. If you are constantly moving during skiing, and have the pressure moving from the first metatarsal head to the heel during the course of a turn before returning to the first metatarsal head and so on, what do you identify as “stance” and when are you in it?

    1. Skiing is a controlled ‘drop’ to a platform below in what is called the bottom of a turn where racers like Hirscher and Shiffrin create a platform in what I call the loading phase from which they can launch into another controlled drop.

      In the loading phase the skier’s COM moves forward in extension/inclination from the heel to the head of the first metatarsal where the posterior chain goes into isometric contraction and loads catapult mechanism. In video of racers like Hirscher they can be seen to appear to drop downhill as they extend and incline the ‘pause’ for a few milliseconds in the loading phase and then shoot forward as if the video were sped up. This is most efficient way to ski recreationally with the least effort (once your body gets adjusted to the high transient peak loads). But the salesperson component of skiing marketed the pure carved turn as letting the ski do the work implying that it is possible to defy gravity not to mention the laws of physics.

Leave a Reply to spompanadla Cancel reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.