SKIER BALANCE: IT’S ABOUT BALANCING OPPOSING TORQUES


The subject of my 4th post published on May 14, 2013 was the role of torques in skier balance. That this was one of my most important yet least viewed posts at 109 views suggests that the role of torques in skier balance is a concept foreign to skiers especially the authorities in the ski industry. This post is a revised version supplemented with information results from a recent study on balance control strategies.


While everyone recognizes the importance of good balance in skiing, I have yet to find an definition of what is meant by good balance, let alone a description of the neurobiomechanical conditions under which a skier is in balance during actual ski maneuvers. In order to engage in a meaningful discussion of balance, one needs to be able to describe all the forces acting on the skier, especially the opposing forces acting between the soles of the feet of the skier and the snow surface (ergo – applied and ground or snow reaction forces). Without knowing the forces involved, especially torques, any discussion of balance is pure conjecture. In 1991,  I formulated a hypothetical model that described these forces.  I designed a device with biomedical engineer to capture pressure data from the 3-dimensional forces (torques) applied by the foot and leg of the skier to the internal surfaces of the boot during actual ski maneuvers.

Test subjects ranged from Olympic and World Cup champions to novice skiers. By selectively introducing constraints that interfered with the neurobiomechanics of balance even a World Cup or Olympic champion calibre skier could be reduced to the level of a struggling beginner. Alternatively configuring the research device to accommodate the neurobiomechanical associated with skiing enabled novice skiers to use  balance processes similar to those of Olympic champions. To the best of my knowledge, no one had ever done a study of this nature before and no one has ever done a similar study since.

When analyzed, the data captured using the device called into question just about everything that is accepted as fact in skiing. This study was never published. For the first time I will present the data and describe the implications in future posts. We called the device shown in the photo the Birdcage. It was fully instrumented with 17 sensors strategically placed on a 3 dimensional grid.

Birdcage

The Birdcage instrumentation package was configured to detect coordinated neuromuscularly generated multiplane torques that oppose and maintain dynamic balance against external torques acting across the running surface of the inside edge of the outside ski in contact with the source of GRF (i.e. the snow).

  1. plantarflexion-dorsiflexion
  2. inversion-eversion
  3. external/internal vertical axial tibial rotation

Ankle torques are applied to the 3 points of the tripod arch of the foot (heel, ball of big toe, ball of little toe) and can manifest as hindfoot to rearfoot torsion or twisting wherein the forefoot rotates against the rearfoot.

A recent study (1.) on the role of torques in unperturbed (static) balance and perturbed (dynamic) balance found:

During perturbed and unperturbed balance in standing, the most prevalent control strategy was an ankle strategy, which was employed for more than 90% of the time in balance.

In both postures (unperturbed and perturbed) these strategies may be described as a single segment inverted pendulum control strategy, where the multi-segment system is controlled by torque about the most inferior joint with compensatory torques about all superior joints acting in the same direction to maintain a fixed orientation between superiorsegments.

The alignment of opposing forces shown in typical force representations in discussions of ski technique is the result of the neuromuscular system effecting dynamic balance of tri-planar torques in the ankle-hip system.

NOTE: Balance does not involve knee strategies. The knee is an intermediate joint between the ankle abd hip and is controlled by ankle/hip balance synergies.

The ankle strategy is limited by the foot’s ability to exert torque in contact with the support surface, whereas the hip strategy is limited by surface friction and the ability to produce horizontal force against the support surface.

Ankle balance strategies involve what are called joint kinematics; 3 dimensional movement in space of the joint system of the ankle complex. Contrary to the widely held belief that loading the ankle in a ski boot with the intent of immobilizing the joint system will improve skier balance, impeding the joint kinematics of the ankle will disrupt or even prevent the most prevalent control strategy which is employed for more than 90% of the time in balance. In addition, this will also disrupt or even prevent the CNS from employing multi-segment balance strategies.

Regardless of which strategy is employed by the central nervous system (CNS), motion and torque about both the ankle and hip is inevitable, as accelerations of one segment will result in accelerations imposed on other segments that must be either resisted or assisted by the appropriate musculature. Ultimately, an attempt at an ankle strategy will require compensatory hip torque acting in the same direction as ankle torque to resist the load imposed on it by the acceleration of the legs. Conversely, an attempt at a hip strategy will require complementary ankle torque acting in the opposite direction to hip torque to achieve the required anti-phase rotation of the upper and lower body.

Balance is Sensory Dependent

As a final blow to skier balance supporting the arch of the foot and loading the ankle impairs and limits the transfer of vibrations from the ski to the small nerve sensory system in the balls of the feet that are activated by pressure and skin stretch resulting in a GIGO (garbage in, garbage out) adverse effect on balance.

Spectral analysis of joint kinematics during longer duration trials reveal that balance can be described as a multi-link pendulum with ankle and hip strategies viewed as ‘simultaneous coexisting excitable modes’, both always present, but one which may predominate depending upon the characteristics of the available sensory information, task or perturbation.


  1. Balance control strategies during perturbed and unperturbed balance in standing and handstand: Glen M. Blenkinsop, Matthew T. G. Pain and Michael J. Hiley – School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK – Royal Society Open Science