WHAT SHOULD A SKI BOOT DO?


After Steve Podborski won the 1981-82 World Cup Downhill title using a revolutionary dorsal fit technology I developed for his ski boots in June of 1980, he proposed that we become partners in a venture to develop a new ski boot that would do for every skier what the dorsal fit system had done for him. In exchange for my creative efforts, Podborski would fund the venture up to a point after which we would try to raise funds from investors for the project.

If I accepted Podborski’s proposal (which I eventually did), I knew the we faced significant hurdles. After giving the proposal a lot of thought, I accepted Steve’s offer. Steve and I became partners in a company called MACPOD Enterprises Ltd. While I had identified some of the pieces of the puzzle, I didn’t yet know the answer to the question what a ski boot should do. But I knew that when the time came to raise money I would need to provide investors with convincing evidence that I knew the answer to this question.

Podborski’s success lent credibility to the project. But his credibility was based on his subjective assessment supported by his race results. To be credible, a ski boot design based on principles of science would need to be supported with data from actual skiing maneuvers that could generate meaningful, quantifiable metrics for such things as balance and ski control. When the metrics were compared to the same metrics from data captured from the same skiers using conventional ski boots, they would need to unequivocally demonstrate superior performance of the MACPOD ski boot. I had to come up with a format that would satisfy potential investors that the new ski boot MACPOD would develop would be at least as good, if not better, than the system Podborski used to win the 1981-81 World Cup Downhill title. Whatever format I came up with had to be capable of allowing investors who skied to ski in it.

In 1992, MACPOD raised money from investors to fund the first phase of the venture. The pressure was on.

The single variable assessment protocol

The factor that convinced Podborski of the merits of my dorsal fit system was the comparison test he did against identical Lange boot shells fit with conventional Lange liners.

After rupturing his ACL testing skis at the end of July in 1980 Steve went to France 2 weeks before the opening downhill race of the 1980-81 World Cup season at Val d’isere to be with the team to support them. He had not planned on skiing, let alone racing, because he had been told by his doctors he was out of commission for the 1980-81 World Cup Downhill season. But Podborski had brought 2 pair of identical Lange boot shells to France with him just in case. One pair had the untested dorsal fit system with only the upper cuff of a Lange liner mounted on the boot shaft. The other pair had conventional Lange liners.  The only difference between the boots was the fit system; the classic single variable assessment protocol.

The graphic below from my US Patent shows a conventional tongue format (20) in FIG 3 (prior art) compared to my dorsal fit system (30) in FIG 5. The shin component (31) is like a conventional tongue.

On a whim, Podborski decided to see if he could ski in the boots with the dorsal fit system. He was amazed to find that he could ski well with little pain in his partially healed, reconstructed ACL. But when he tried to ski in the boots with the conventional liner he could barely ski.  I found this interesting because the impetus for the new fit system was my hypothesis that dorsal loading of the bones of the midfoot might reduce strain on the knee by dampening decompression of the arches resulting from perturbations in ground reaction force due to asperities and undulating terrain. A conventional liner could not be used because it would have interfered with the interface of the lower shell overlap closure on the upper surface of the dorsal fit system required to apply force to it. Fig 9 below from the patent shows how the overlap of the shell applies force to the upper surface of the dorsal fit system. The buckle closures allow the force, which should be minimal, to be regulated.

The ability to compare the dorsal fit system against a conventional liner system on the same day and in same conditions made the superiority of the dorsal fit system apparent. The unprecedented improvement in performance with no run-in period or special training program strongly suggested that the improvement resulted from reducing factors in conventional ski boots that limit or degrade human performance. This experience caused me to undertake a critical analysis of the functional requirements of the human system for skiing. This exercise opened the door to the possibility of technologies that would integrate external appendages such as skis and skate blades with the human system, what I later came to term Bio-Integration.

Bio-Engineering

If structures of ski boots, ice skates and cycling shoes can limit or degrade the human performance of the user it also became apparent to me that it might be possible to modify the function of the feet and lower limbs that would make it specific to activities such as skiing, skating or cycling and even potentiate neuromuscular function. I termed this concept Bio-Engineering. I didn’t realize until 1991 that the dorsal fit system used principles of Bio-Engineering.

The graphic below is the pressure image of the right foot of an elite cyclist showing the forces applied by the foot to the sole of the shoe on the pedal spindle at 3 o’clock in the stroke sequence at a low cadence with a moderate to high load on the crank. The cyclist is wearing a conventional rigid sole cycling shoe with no arch supports, wedges or other accessories.

Red is highest force. Dark blue is the lowest force. Forces were recorded with a Tekscan F Scan system fit to the shoe.

The highest force is applied under the ball of the great toe and the great toe and to a lesser extent, the second, third and fourth toes. The dashed line shows the approximate location of the pedal spindle which is the source of resistance/reaction  force. This pressure pattern is typical of elite cyclists. Ideally, the highest force should be applied across the width of the pedal spindle by the heads of all five metatarsals. Note that aside from the high pressure patterns on the ball of the foot and toes 1 through 4 the pattern is diffuse across the heads of metatarsals 2 through 5 and under the heel.


In my next post, I will show a pressure pattern of the same foot in the same position with a technology that Bio Engineers the foot and lower limbs and discuss the significant differences.

5 comments

  1. Thanks for the prompt reply. It’s as I expected unfortunately. After years of following your information and the depth and breadth of analysis that you have invested in this field I kind of expected the answer. Its too bad that national team high performance athlete development programs can’t or won’t get on board with this.

  2. Are there any measurement devices that you would feel are accurate enough to be used on snow in order to allow a coach or bootfitter (or both skill sets in one person I would guess might be optimal for the assessment) to produce some data that would be usable? What’s your opinion on the Carv unit? I haven’t had a chance to try mine yet because the Android software that I need hadn’t been developed yet. The reason I ask is that equipment like the Tekscan you use is probably economically beyond the means of small programs or markets.

    1. The problem is that the amount of interference with physiologic function caused by the ‘indiscriminate enevlopement’ of most ski boots makes it impossible to capture any meaningful due to what I call the ‘noise factor’. Even pressure data from pressure insoles like TekScan F Scan or the Novel Pedar system is typically contaminated as even the University of Ottawa studies and the more recent French study have confirmed. This may sound as if ski boot makers are immune from the prying eyes of emerging analytical technologies. But I do not believe this is the case. The Gold standard for human lower limb function is barefoot. Anything placed on the foot, even a thin sock will compromise function in a way can be measureed. Barefoot data captured on large force plates can and is more frequently being used as a reference with which to assess the effect of footwear on the user.

      While it might seem that the equivalent of a barefoot ski boot is not possible. It is. This is what the Birdcage research vehicle disclosed in my US Patent 5,265,350 was a still is. It can be made very economically today for use in research. Unfortunately, the academic community has been slow off the mark in recognizing the opportunity to study lower limb function in skiing using a device like this.

Comments are closed.