In order to get the best connection of the foot with the ski the boot must fit the foot as closely and as tightly as possible. Race boots need to be narrow in forefoot, significantly narrower than recreational boots, so that the boot will grip the forefoot tightly for ‘optimal steering’ control. We know these things to be true because that’s what the experts preach, or at least that’s the official story. If everyone agrees on an issue then consensus equals truth. In my case, I knew this was true because I couldn’t seem to get a tight fit of my feet with my ski boots. Other skiers must have been having the same problem because in the ’70s improving fit was a common theme of ski magazine articles on boot fitting. And there was an array of ankle pads and other aids available to help tighten the fit.

If one had a loose fit of their foot in their ski boots the answer was simple; improve the fit with pads or foam injected liners that precisely conform to the shape of the foot. Today heat formable liners and even heat formable boot shells, considered by some to be the Holy Grail of skiing, are available as are boots formed to lasts made from 3 D scans of the user’s foot. Perfection draws closer. That all boot fit technology has gravitated towards the perfect fit serves to prove the soundness of the concept………or maybe not. Maybe there is something else going on.

First, let’s be clear. The foot must be constrained in some fashion to achieve an intimate connection with the ski. But what I started to notice is that the feet of elite skiers were different in a fundamental way from those of lesser skiers whose feet were in turn different from the feet of those (of which I was one) who were struggling to ski in rigid plastic ski boots. Specifically, the feet of the elite skiers were compact and seemed tighter than the feet of lesser skiers. What do I mean by tighter? The foot has 28 bones that shift in relation to each other in three-dimensional space. The movement of the bones is constrained by soft tissue, in particular  ligaments that bind the bones together. The movement of the bones of the feet of elite skiers seemed to be more constrained by ligaments than the bones of the feet of lesser skiers. Put another way, the feet of elite skiers appeared to be able to function reasonably well within the constraints of the rigid plastic ski boot.

An excellent animation showing the movement of the bones of the foot called, ‘Ankle & Subtalar Joint Motion Function Explained Biomechanics of the Foot – Pronation & Supination by Dr Glass DPM’ can be viewed at – http://www.youtube.com/watch?v=0R4zRSE_-40

The problem is that in an industry where the foot is represented by an inanimate one-piece last, the tendency is to view all but the most deformed feet as equal. Clearly this is not the case. Research on foot characteristics has classified the human foot into three categories; 1) tightly bound, 2) moderately bound and, 3) loosely bound. If your feet fall into category 1), tightly bound, and your foot is compact with moderate or less width, the odds are that you will find skiing easy. Category 2 is less certain while category 3), of which, I was one, means that attempts to tighten the fit of the ski boot could, and usually do, actually make the bones of the foot looser because the structures of the boot interfere with the processes that tighten the bones of the foot. This results in a perceived looseness of the foot, which can lead to subsequent attempts to tighten the fit of the boot resulting in a vicious circle.

Recognizing that foot structure can affect the ability to ski adds a layer of complexity, one that marketers would probably rather ignore. The essence of effective marketing is simplicity. “Watch what I do. Listen to what I tell you to do and you will ski like me”. Easy! Except for the fact that for the majority it doesn’t work this way. They may try their best to ski like the best. But the simple fact of the matter is…….they can’t because of their type of foot type. Like the earth is flat story, once people buy into concept they tend to stick with with it even in the face of overwhelming evidence that it is flawed. The brain subconsciously filters out any information that disagrees with the official position. So those with loosely bound feet “don’t get no respect”.

But it gets worse. Skiers with tightly bound feet tend to ski with their boots loosely buckled. Cases have been documented of racers winning races who had forgotten to close their boot buckles. Skiers with tightly bound feet usually ski best with loosely buckled ski boots, something those with loosely bound feet would find unthinkable. The resulting Paradox flies in the face of the common sense. So it is conveniently ignored. Skiers with tightly bound feet usually end up being the ski pros by a process of elimination. The best feet rise to the top. Because the best skiers tend to assume that skiing is a simple matter of teaching someone to do what they can easily do, they don’t appreciate, let alone understand, why others can’t seem to get it.

In summary, loosely bound feet require much more three-dimensional space in which to acquire tightness than tightly bound feet. Tightly bound feet function best in minimally tensioned ski boots. But maximal constraint can never make loosely bound feet tight because a tight fitting boot inhibits the physiologic processes that tighten the joints of the foot. Knowing this, I knew that the answer had to be to find a way to constrain the foot in a manner that allowed the tightening processes of all types of feet to engage. If this were possible all feet would become equal. In effect, this would serve to level the playing field or perhaps better stated, make the slope more consistent for everyone.