In this post, I will discuss the role of impulse loading, in the perspective of phases of a turn cycle, in creating a platform under the body of the outside ski on which a skier can stand and balance on.

Impulse Loading

Impulse loading is crucial to the ability to establishing a platform under the body of the outside ski by cantilivering GRF, acting along the running surface of the inside edge, out under the body of the ski to create a stable platform for the skier to stand and balance on.

Maximization of dynamic stability while skating is crucial to achieve high (vertical) plantar force and impulse. (1)

Impulse in particular has been identified as an important performance parameter in sprinting sports as skating. (1)

The preceding statements apply equally to skiing.

The most important aspect of alternating single limb support locomotion is the ability to rapidly develop a stable base of support on the stance or support leg from which to initiate precise movement. Dr. Emily Splichal refers to this process as Time to Stabilization. The ability to balance on the outside ski of a turn is unquestionably the single most important aspect of skiing. Time to Stabilization, especially in GS and SL , is where races are won or lost. Here, the time in which to maximize dynamic stability on the outside foot and leg on the outside ski is in the order of 20 milliseconds (2 one-hundredths of a second); less than a rapid blink of the eye.

The Mid Stance, Ski Stance Theory

The predominant position within the ranks of ski industry is that skiing is a mid stance activity in terms of the stance phases of the gait cycle. In the mid stance phase of the gait cycle, tension in the longitudinal arch (LA) resulting from passive tensioning of the plantar ligaments is minimal and the foot is continuing to pronate. Mid stance, as the assumed basis for ski stance, appears to have served as the rational for the assumed need to support the LA with a custom footbed or orthotic (usually in neutral STJ) and immobilize the joints of the foot with a custom fit liner. Hence, the theory that the foot functions best in skiing when its joints are immobilized. I am not aware of any studies, let alone explanations based on principles of applied science, that supports this theory. To the contrary, the available evidence suggests that immobilizing the joints of the foot, far from making it function best in skiing, has the exact opposite effect.

Wearing ski boots for a few hours can lead to a weakening of the muscles that operate within the ankle joint. This works as though one joint was excluded from the locomotive function.

………. according to Caplan et al. [3], the muscle groups that determine strength and are responsible for the function of stability in the ankle joint are very sensitive to changes caused by immobilisation. They found that immediately after immobilising the ankle joint for a week, the balance parameters were 50% lower than before the immobilisation.

 The problem with the mid stance, ski stance theory, is that impulse loading cannot not occur until late stance when arch compression, fascial stiffening of the forefoot and torsional stiffening of the subtalar and knee joints, is maximal.

One factor that has been shown to reduce arch compression is arch supportive insoles and orthotics. A study done in 2016 (1.) compared the effect of half (HAI) and full insoles (FAI) on compression loading of the arch to compression loading of the arch that occured in a standardized shoe (Shoe-only). Two separate custom insoles were designed for each participant. The first insole was designed to restrict arch compression near-maximally compared to that during shod running (Full Arch Insole; FAI) and the second was designed to restrict compression by approximately 50% during stance (Half Arch Insole; HAI). The Full Insole (black) most closely resembles the type of arch support used in ski boots to support the foot. The bar graph below shows the resulting reduction compression. I have overlain the FAI bar to illustrate how it compares to Shoe Only compression. This kind of study can now be done and should be done in vivo in skiing – during actual ski maneuvers where the effect of insoles and custom fit liners on the physiologic function of the foot and lower limb as a whole can be studied and assessed.

Two pressure studies done in 1998 by a team from the University of Ottawa (2, 3), that used elite skiers as test subjects, found large variations in pressures applied to the ball of the foot observed in the data that suggested some factor, or combination of factors, was limiting the peak force and impulse in terms of the vertical force that skiers were able to apply to the sole of the boot and ski. The researchers suggested a number of potential factors but did not investigate them.

These highest pressures reach up to 30 newtons per square centimetre. Force-time histories reveal that forces of up to 3 times body weight can be attained during high performance recreational skiing (my emphasis added).


It is quite likely that the type of equipment (skis and boots) worn by the subjects had an effect on the values obtained (my emphasis added).

A factor that was not controlled during data collection was the equipment worn by the subjects. The skiers wore different boots, and used different skis, although two of them had the same brand and model of skis and boots. It still has yet to be determined if that factor had any effect on the results. A point that all the skis that the subjects used had in common is that the skis were all sharp side-cut skis (also called shaped skis). Another equipment variation which may have affected in-boot measurements, is that some subjects (n=5) wore custom designed footbeds, while the other did not (my emphasis added).

In 2013 (4), a study presented at the European Congress of Sports Science in Barcelona, Spain that used special hockey skates that I prepared to maximize peak force and impulse using principles described in my blog compared peak and impulse forces of elite skaters in the skates I prepared (NS) to peak and impulse forces seen in their own skates (OS). The skates I prepared were used as a standardized reference similar to the protocols where baseline data obtained barefoot is used to assess the effect of specific footwear on physiologic function. The bar graphs below compare NS (the skates I prepared) to OS (the subjects own skates).

The researchers noted:

Thus, the results of this study show that direct measurement of these dynamic variables may be important indicators in evaluating skating performance in ice hockey as it relates to skate design or skill development.

Peak force and impulse are associated with high peak tension in the LA created by Achilles to forefoot load transfer.

I expect that similar results would be seen in ski boots.

The Phases of a Ski Turn Cycle

In order to appreciate the dynamics of impulse loading in skiing, I have modelled the phases of a turn cycle into 2 main phases with associated sub phases. The graphic below shows the Loading (1 – yellow) and Stance (2 – red) Phases of the outside (left) foot in a turn cycle with sub phases. The actual turn phase starts at the juncture of the traverse and from fall line and ends when the skier starts to extend the inside (right) knee. I will discuss the turn cycle in detail in a future post. My long-held theory, which was partially validated with the 1991 Birdcage studies, is that ski movements should employ the same hard-wired patterns as walking and running and that skiing should as instinctive and transparent.

Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. (5)

The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. (5)


Peak Force and impulse loading occurs at ski flat between edge change (red circle). This is what I refer to as the Moment of Truth. Moment, in this context, being a moment of force or torque. The manner in which the torque acts in the sequence of events surrounding edge change determines whether GRF is cantilevered under the base of the ski or whether it acts to rotate the ski (invert) it out of the turn.



In my next post, I will discuss the 2-step rocker impulse mechanism that cantilevers GRF acting along the running inside edge of the outside ski out under the body of the ski.

  1. The Foot’s Arch and the Energetics of Human Locomotion: Sarah M. Stearne, Kirsty A. McDonald, Jacqueline A. Alderson, Ian North, Charles E. Oxnard & Jonas Rubenson
  2. ANALYSIS OF THE DISTRIBUTION OF PRESSURES UNDER THE FEET OF ELITE ALPINE SKI INSTRUCTORS: Dany Lafontaine, M.Sc., Mario Lamontagne, Ph.D., Daniel Dupuis, M.Sc., Binta Diallo, B.Sc.. Faculty of Health Sciences1, School of Human Kinetics, Department of Cellular and Molecular Medicine, Anatomy program, University of Ottawa, Ottawa, Ontario, Canada. 1998
  3. ANALYSIS OF THE DISTRIBUTION OF PRESSURE UNDER THE FEET OF ELITE ALPINE SKI INSTRUCTORS: Dany Lafontaine, Mario Lamontagne, Daniel Dupuis & Binta Diallo, Laboratory for Research on the Biomechanics of Hockey, University of Ottawa, Canada – Proceedings of the XVI International Symposium on Biomechanics in Sports (1998), Konstanz, Germany, p.485.
  4. A Novel Protocol for Assessing Skating Performance in Ice Hockey: Kendall M, Zanetti K, & Hoshizaki TB School of Human Kinetics, University of Ottawa. Ottawa, Canada – European College of Sports Science
  5. Dynamic Sensorimotor Interactions in Locomotion: SERGE ROSSIGNOL, RE´ JEAN DUBUC, AND JEAN-PIERRE GOSSARD Centre for Research in Neurological Sciences, CIHR Group in Neurological Sciences, Department of Physiology, Universite´ de Montre´al, Montreal, Canada – 2006 the American Physiological Society




This is a quick post to comment on a gutsy move by Tina Weirather; one that probably caught most off guard after her very successful 2016-17 World Cup season and especially just before the upcoming Olympics.

I believe Weirather’s timing is impeccable.  Said Weirather;

……….I’ve spent a long time thinking about all these steps. I asked myself a lot of questions and balanced the risks as well as all the potential advantages and disadvantages. The most important questions were: “How can I be most successful, how can I ski the fastest, how can I evolve the most?” The answers got clearer and clearer with every day I tested, every conversation I had, and the more I listened to my gut.

The tests went really well……………”

When I worked with Provincial and Canadian Team racers, I always made boot changes as soon as possible after the competitive season ended. The changes were done in a structured, systematic manner involving one-on-one testing where changes were made to one boot at a time and then compared to the unchanged boot. Only when the changes were proven better when compared to the unchanged boot were changes made to the other boot. In setting up new boots, it was standard practice to swap the liners from the current boots into the new shells to confirm they were properly set up and do one-one-one testing that compared the new shells with the liners from the previous boots to the previous shell/liner combination.

Always have an Escape Route

Even with a lot of testing that resulted in new boots that appeared to be an improvement, I always recommended that racers keep their old boots intact and with them during training right up until racing started. If last minute doubts arose, the best practice was to revert to the old proven setup. Recall Shiffrin’s disastrous start to the 2014-15 World Cup season after changes were made to her boots in the fall of 2014. Fortunately, Shiffrin was able to revert to her old boots, train in Italy over Christmas and get back on track in the New Year. Many racers are not so fortunate.

It was my policy to not make changes to a racer’s ski boots should during the competitive season unless there was no other option. Making an equipment change now, such as Weirather has done, provides a big window in which to make adjustments in technique and fine tune equipment before the start of competition.

A Formula (One) for Success Team

Weirather impressed me when she said;

It took a while, but I’m now 100% convinced I’ve found my dream team: HEAD (new) Tech: Reini Berbig (new) Coach: Charly Pichler (new) Dryland training: Micha Eder / @rotorteam Sports therapist: Fabienne Frommelt Team: Swiss Ski WC 1 Manager: Christopher Holzknecht (new).

I have long maintained that in order to succeed, ski racers need to adopt the Formula One model where the racer drives the skis and a whole team works together to support the racer.

In important ways, I believe Tina Weirather is the role model for World Cup ski racers.



With ski season coming to an end in many parts of the world, I am going to start posting on what I have learned over the past ski season and changes that can be made to components such as the boot board (aka Zeppa) to improve performance and why how these changes work. I am also going to post on the implications on skiing of recent studies as well as the application and impact of technologies such as CARV and Notch. If these products become available soon enough, I plan to some testing before next ski season so I can write posts on how these technologies can be used to improve ski technique and technical analysis as well as identify problems caused by ski boots.

For the time being, I have decided to hold off on discussing the rocker impulse loading mechanism of the mechanics of balance on the outside ski because limitations imposed by the ski boot prevent the majority of skiers from generating the high transient impulse load within the 2 millisecond window that occurs during roll over through ski flat during edge change (see THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE) that is required to engage the mechanism that enables a skier to balance on the outside ski.

For academics, researchers and others with an interest in the science aspect of the design of ski equipment and the formulation of ski technique, I will be posting studies that have application to both.


While going through my files, I found an article that Joan Rostad compiled and edited in September 2006 from my writings to the Ski Balance forum that spun off from EpicSki in 2002. Since it no longer appears to be available on the internet, I have decided to put up it as a post.

It was around 2002, after someone introduced me to the EpicSki forum, that I connected with Joan Rostad. Joan was a Professional Ski Instructors of America (PSIA) executive vice president and served as a board member from 1989 until 2002. She was a writer, editor and publisher of EpicSki, a popular skiing website. Joan and I shared a common passion for skiing and a commitment to making a contribution to the advancement and enjoyment of the sport.

By 2002, the Birdcage/Rise project that started in 1991 to attempt to bring a ski boot to market based on principles of anatomy had become insolvent. A more recent attempt to introduce pressure analysis to skiing to diagnose boot problems as the cause of technical faults had stalled. Although I was optimistic that my ski boot design would become a reality after the unprecedented success of the Birdcage experiments that validated my hypothesis of the mechanism by which the world’s best skiers were able to truly balance on their outside ski, my optimism turned out to be short-lived. The project suffered one setback after another, eventually becoming insolvent in 2000.

Newton’s Laws and Product Marketing

Shortly after the successful Birdcage studies, a friend who worked in marketing told me that while I had gotten the right answer in terms of what a ski boot should be, it was the wrong answer for the current players who were seeing a growing revenue stream from the wrong answer. He told me to expect pushback. He turned out to be right

Like Newton’s body in motion that continues in motion until acted on by an external force, a successful product  acquires economic inertia that resists new thinking. This issue aside, accepting that my ski boot was founded on the right principles would constitute a tacit admission that current ski boots were based on the wrong principles. This is not a good marketing story.

In Honor of Joan Rostad

By 2002, Joan Rostad (aka nolo in EpicSki), myself and others were witnessing a growing erosion of the passion that had long been the essence of skiing as the increasing corporatization shifted attention away from skiing and the skier to the skier’s wallet. Rostad, myself and others were attempting to create a common platform in EpicSki  that would unite those who were facing an uphill battle in their attempts to retain a semblance of the passion that made skiing special.

I am both flattered and privileged to have been the benefactor of Joan Rostad’s considerable passion and purpose. Although the concepts presented below are mine, the format and editing are due to Joan’s talent and efforts for which she deserves full credit.

Thank you Joan Rostad for all you done for skiing. This is for you.

Note to the Reader: Since this article was written, my thinking on some issues has evolved and matured. This is what should ideally happen if one is truly committed to the truth.

Skiing Biomechanics Explained By David Macphail

By: nolo and stins – Posted 9/21/09 • Last updated 4/26/11

Table of Contents

  1. Introduction
  2. Part I. The Secret of Effortless Skiing
  3. Part II. Four Key Biomechanical Principles
  4. Post Script


David MacPhail was the innovative engineer who created the “MacPod” prototype boot in partnership with “Crazy Canuck” Canadian downhill champion Steve Podborski as an ergonomic advancement in ski boot technology. The MacPod “birdcage” design, which was applauded by scientists in the human performance community, was met with utter indifference by boot manufacturers who never gave it any serious consideration.

The following remarks were selected and compiled from David MacPhail’s writings to the Ski Balance forum that spun off from EpicSki in 2002. At its height of activity, the group consisted of David and me (nolo), Rick Schnellmann (Fastman), Ric Blevins (RicB), Hans Kosak (Biowolf), Lou Rosenfeld (lou rosenfeld), Martin Olson (Martino), and Steve Hultquist (ssh). The forum was active from late 2002 until the spring of 2005, when David’s creative energies turned to golf and the discussion lost its center of gravity.

Part I. The Secret of Effortless Skiing

If you understand the following principles and rules you will understand the secret of effortless skiing. More importantly, you will be able to teach it to others, and someday there may be enough people with this understanding to influence the ski industry to produce equipment designed primarily for good biomechanics instead of good looks.

1. Basic physics

Newton’s Law says, “A body in motion in one direction will tend to stay in motion in that direction unless acted upon by an outside force.” In skiing, gravity is always trying to pull us down to the center of the earth. The low friction base of the skis sliding on snow facilitates a shear force component of gravity that acts parallel to the fall line. You acquire inertia due to the acceleration. The turn effort creates centrifugal force, which wants to eject the skier off the tangent of the arc. The only thing stopping the forces from pulling you downhill is the internal force expressed in the outside leg against a ground reaction force (GRF), assuming balance exists.

2. Balance

By my definition, balance is equal and opposite vertical forces aligned in opposition along the same force path with one net external force and one net internal force.

3. Skiers are naturally two-footed

Skiing involves more than just standing in place. We are moving from one limb (outside leg) to another. This basic form of locomotion is one of alternating single limb support, the same as walking. It wasn’t until I connected the movements of walking to those of skiing that I was able to perform and coordinate the movements with ease.

When we walk and when we ski we have a stance foot and a swing foot. When you lift your foot to take a step the movement comes from the inertia of the movement of your center of gravity (CoG), but support from the new stance foot makes the movement possible. If you look at a skier in the middle of a turn the inside leg exaggerates the characteristics of the swing leg in walking. When walking, as you swing the unloaded leg forward, this foot naturally inverts. This is the same movement of release of the old stance foot in skiing. Even when constrained by the ski boot the foot will always try to invert when unloaded.

Similarly, as you shift weight to your new stance foot in walking, so do you shift the weight in skiing: the weight first goes to the outside of the foot, and additional weight tips the foot to the inside, which helps to engage the inside edge of the outside ski. The foot’s anatomy is such that it must adapt to the transverse aspect first before it can fully accept the weight of the body. The lateral arch must make contact first and cause the foot to roll into pronation (i.e., evert) in order to tension the arches in the correct sequence.

In the last third (bottom) of the turn, CoG is behind the uphill or swing foot. So the initial active weighting will be on the heel. If the skier initiates movement down the hill by relaxing the support or stance leg while starting to extend on the swing leg, the force will start to drive the foot into eversion. The new stance foot needs to fully adapt to the supporting surface in order to generate a dynamically rigid base of support for CoG. Then the skier has to simultaneously extend both legs to get CoG up and over the ankle of the swing foot in order to unequivocally make it the new stance foot. It is important to note that the extension is gravity-assisted.

4. Extension drives pronation

Because (at the end of the turn) the uphill or swing leg is flexed in relation to the support or stance leg, we have an opportunity to extend away from the inertia of CoG–which is being pulled down the hill and down towards the center of the earth. It is important to understand that this is a lateral extension that moves our hips and core towards the center of the next turn, without up motion. We need this extensor effort to create the force in the foot against GRF to drive the outside foot into a pronated, stance position.

This critical moment is sort of a twist on the line of the song New York, New York: “If you don’t make it here you won’t make it anywhere.” If you don’t drive the force in your foot to the ball of the big toe, it will be on the wrong side of the inside edge of the ski at its waist. This will create a situation where you will be using the boot cuff to indirectly transfer power to the ski, and doing so will cause a disruption to the balance system feedback and interfere with effectively skiing from the bottom of the foot.

If you do not drive the force in your foot to the ball of the big toe, as soon as the external forces begin to build, the pronated position of your foot will reverse into supination and your foot will revert back to the adaptive state. Please be clear on this because the end result justifies the effort of extension. Try and visualize what is happening during extension of the swing leg. Your body is pivoting about the uphill or lateral aspect of the foot as CoG moves downhill and over the ski. You have to press with enough force to cause the foot to rotate faster. Additionally, elevating the inside hip greatly assists both rotation around the foot and loading the foot. In this scenario, both internal and external mechanics are pulling the stance foot into eversion and holding the edge. The whole lower limb is turning into the hill.

5. External forces can reinforce stability

By simply positioning CoG over the line of force where the ball of the foot is acting within the sidecut of the ski (think of it as literally a line extending from the point the flare of the ski starts to the point where it stops), the forces acting on the skier will reinforce the stability of the base of support even as the forces grow in magnitude. In other words, external forces that would normally disrupt the skier’s balance will have the complete opposite effect in this configuration.

If the skier is using the inner (uphill side) of the boot cuff to hold the ski on edge then the action of the skier is opposing a force that is trying to rotate the stance foot into inversion away from the slope of the hill, which compromises her hold on the edge.

If you get bumped around, you can absorb and fill the surface gaps by letting the ground push toward you on convex surfaces and letting your leg push toward the ground on concave surfaces. The body will do this reflexively if the forces are balanced and the soleus muscle is in eccentric contraction. You don’t even have to think about it. The only thing you have to do is keep CoG in the right place. (This assumes your equipment will actually allow you to do this.)

Part II. Four Key Biomechanical Principles

1. The pelvis always rotates about the ankle of the stance foot

In the first photo Norm Kreutz is rotating his pelvis towards the outside of the turn about the ankle of his stance foot. This is driving the inside or swing leg in the opposite direction, i.e., into the hill.

In the second photo Norm is relaxing the stance leg and extending the swing leg. This transfers the support of CoG to that leg making it the new stance leg. This action transfers the point that the pelvis is rotating about to the ankle of the (new) stance foot. As Norm extends his legs the pelvis will draw his feet in the opposite direction that it was moving in the first photo. It is kind of like a power assisted rotary move. For this reason Norm does not want to plant his pole until after the extension has begun. This helps stabilize the position of his CoG to ensure rotation occurs in his femurs.

The interesting thing is that this all happens on its own as part of the kinetic flow which should also flow in the direction that starts when the stance leg changes. Once you get the movement pattern right there is nothing to think about aside from deciding when to start a new turn.

2. Kinetic Flow
If there is one area where there seems to be general agreement it is that edging and pivoting occur as a unit movement pattern and not as a series of separate events spliced together. This is why the timing and sequence of the initial move to start a turn is important.

Every turn has a start/end movement sequence that is consistently towards the inside of the turn just as there is a consistent flow in walking. Kick starting the flow is always contrived. This is why the first turn is the most difficult.

The movement that sets up the direction of the flow starts in the feet. At the completion of a turn the flow is to the inside of the turn. To turn in the opposite direction requires that the kinetic flow of the joints of the body be reversed. The outside foot will be in pronation and the inside foot will tend to pronate. In other words the inside foot is already primed to flow to the inside of the new turn.



When Maier relaxes his outside foot (first photo of the turn) his pelvis starts to unwind. This lets CoG drift behind his inside foot. Now CoG is behind his new stance foot and the foot is supported on its lateral or outer border. It is in the same position as it is at heel strike in the adaptive phase of walking.

If you look at the movement of his upper body as he comes out of the fall line you will note that it seems to be coming at you (like a 3D movie) as opposed to going across the hill. If you were standing opposite the gate looking across the hill this would be more readily seen. As his CoG begins to move downhill Maier extends on his (new) outside foot. The foot is initially on its outer aspect but is tending to pronate. Applying force to the foot in combination with the movement of CoG starts the movement of the foot and leg in the direction of pronation. As CoG crosses over his skis his body will become erect with the slope of the hill. In effect, he is ‘standing up’.

Remember, his inside femur was previously moving in a direction in relation to its position with the pelvis that was consistent with supination of the foot (i.e. as the swing leg in walking). The movement of the femur is in opposition to the joint movement of the foot (supination vs. pronation). Maier has to change the relationship of the pelvis to match the flow of the feet.

3. The pelvis always rotates into the stance foot whether in walking or skiing
As he extends on the new inside foot the tension of the rotator muscles in the pelvis unwinds the legs and aligns them with the pelvis, turning the legs into the fall line. As the turning progresses Maier applies rotational effort simultaneously to both legs to pivot the legs across the pelvis so that the inside hip leads the outside hip. In effect Maier creates the natural flow of the pelvis that takes place when one steps R foot – L foot, etc. At the same time he uses the extension movement to bring CoG up and ahead of the ankle of his new outside foot. By this movement Maier synchronizes the flow of the legs to match the kinetic flow of the joints of the outside foot (foot everted, leg turning into the turn, pelvis turned into the outside leg or towards the outside of the turn). Once he has synchronized the flow he exaggerates the rotation of the pelvis to reinforce the pronation of the outside foot as he relaxes onto the outside foot and stretches the muscles in eccentric contraction.

4. The flow of the feet is reinforced by the pelvis
Unless one has a reasonable knowledge of biomechanics the effect of the rotation of the pelvis on edging usually makes no sense because it seems to have nothing to do with the mechanics of the feet. The effect of this movement is that it shortens the muscles that drive the foot into pronation. This not only applies edging force to the ski, it also torques (twists) the ski about its long axis. This is why Maier’s ski bites positively at the shovel. If you compare him to lesser skiers you will typically see skiffs of snow being thrown up off the edges instead of flowing along the ski. This is caused by the percussion of the ski as it oscillates about its edge (into the hill – away from the hill). This is due to insufficient loading of the shovel.
Post Script

Although it is common to speak of kinetic flow starting in the feet, science has proven that the movement really originates out of the pelvic floor, hips, and the abdomen. These muscles will fire first in a functionally fit individual. They do this because they are required not only for stability but also to initiate the pelvic rotation. I think this is why lifting and tilting the pelvis as an exercise is so effective. – Ric Blevins

Compiled and edited by Joan Rostad, September 2006



As time permits, I analyze the movement and loading patterns of elite skiers such as Mikaela Shiffrin, Lindsey Vonn, Ted Ligety, Tessa Worley and others. Occasionally, a source sends me video of these racers training.

I have identified a specific movement and loading sequence pattern that I use to analyze technique. This requires decent quality video and specific camera angles. In a future post, I will describe the process, the key metrics I look for and what they indicate.

Up until I saw the video of Vlhova, that is the subject of my post, SUPER PETRA VLHOVA’S EXPLOSIVE IMPULSE LOADING IN ASPEN SLALOM, I rated her as one of the better technical racers on the World Cup circuit. But I did not consider Vlhova to be in the same class as a Shiffrin or a Worley.

When someone posted a link on FaceBook to Vlhova’s winning run in the Aspen slalom, I was stunned by what I saw in first few gates. This was not the same Vlhova I had analyzed earlier in the season. Vlhova has definitely changed and it is for the better.


In this post, I am going to discuss why the optimal stance for skiing is dependent on the loading sequence of the new outside foot of turn, how this must start in the transition phase and why it is critical to the rocker impulse loading mechanism that engages the shovel and inside edge of the outside ski at edge change. This issue was introduced in THE MECHANICS OF BALANCE ON THE OUTSIDE SKI: TIMING OF EDGE CHANGE. The rocker impulse loading mechanism and the ability to balance on and control the outside ski is dependent on the ability to rapidly tension the biokinetic chain that stiffens the forefoot and torsionally stiffens the ankle and knee joints. This process enables top down, whole leg rotational force, into the turn, to be effectively applied to the foot and ski from the pelvis.

A Middle Ground on Stance

Although there is much discussion in skiing on the subject of stance, it is rare for discussions to include, let alone focus on, the foot.

The red rectangle in the graphic below shows the mid stance phase in the 8 component Gait Cycle.

A common position amongst the various authorities in skiing on stance, is that it is represented by the mid stance phase of the Gait Cycle. The 8 component Gait Cycle is the universal standard for discussion and analysis of gait in human movement. During the turn phase, the sole the outside foot or stance foot is in substantially constant contact with the zeppa or boot board. Since the ski stance does not involve initial heel contact or terminal phases, it was reasonable to conclude that skiing must be a mid stance activity.

Assuming that stance skiing is a mid stance activity also meant that the joints of the foot are mobile and the foot is still pronating and dissipating the shock of impact. The fact that the foot is not yet fully tensioned in mid stance, while still pronating, appears to have led to the conclusion that the foot is unstable and in need of support. Towards this end, form fitting footbeds, liners and, more recently, form-fitted shells were introduced and soon became standard. I described what has become known as the Holy Grail of skiing; a perfect fit of the boot with the foot and leg; one that completely immobilizes the joints of the foot in my post, A CINDERELLA STORY: THE ‘MYTH’ OF THE PERFECT FIT.  This objective, precipitated the premise that forces are best applied to the ski using the shaft of the ski boot as a handle with the leg acting as a lever. In this paradigm, the foot was relegated to a useless appendage.

The Missing Ninth Component – Late Stance

The problem with the assumption that mid stance is the defacto ski stance is that it has only recently been suggested that a critical ninth component, Late Stance, is missing from 8 components of the Gait Cycle.

Although it has been known for decades that the foot undergoes a sequential loading/tensioning process that transforms it from what has been described at initial contact as a loose sack of bones, into a rigid lever in terminal stance for propulsion, the effect of fascial tensioning on late stance has remained largely unexplored until recently when the exclusive focus on the rearfoot began to shift to the forefoot. I discuss this in BOOT-FITTING 101: THE ESSENTIALS – SHELL FIT.

As recently as 2004, Achilles/PA loading of the forefoot was poorly understood. Under Background, a 2004 study (2.) on the role of the plantar aponeurosis in transferring Achilles tendon loads to the forefoot states:

The plantar aponeurosis is known to be a major contributor to arch support, but its role in transferring Achilles tendon loads to the forefoot remains poorly understood.

The study found:

  • Plantar aponeurosis forces gradually increased during stance and peaked in late stance.
  • There was a good correlation between plantar aponeurosis tension and Achilles tendon force.
  • The plantar aponeurosis transmits large forces between the hindfoot and forefoot during the stance phase of gait.
  • The varying pattern of plantar aponeurosis force and its relationship to Achilles tendon force demonstrates the importance of analyzing the function of the plantar aponeurosis throughout the stance phase of the gait cycle rather than in a static standing position.

Changes in Muscle-tendon unit (MTU) and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion. These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient foot to ground force transmission.

Transmits large forces and foot to ground force transmission means large downward forces directed at the ground or to a ski and from there to the snow.

Although I did not understand the esoteric details of fascial tensioning back in 1993, I was sufficiently aware of the relationship between peak tension in the plantar aponeurosis (PA), to be able to construct a simple model that illustrates how peak PA tension results in peak Achilles tension and how this causes the soleus muscle to go into isometric contraction, arresting further forward movement of the shank. I discuss this in detail in my series of posts on the SR Stance.

The photos below shows the simple model I made in 1993. Simple models of this nature are finding increasing use today to model what are called Anatomy Trains.

In late stance, the foot gets shorter in length and the arch gets higher and tighter as intrinsic tension transforms the foot from a mobile adapter in early stance into a rigid lever in late stance so it can apply the high force to the ground necessary for propulsion in the terminal stance phase that occurs at heel separation. The graphic below shows how the arch height h to foot length L ratio increases as the foot is getting shorter and the arch gets higher in late stance.

What has only recently being recognized is that the fascial tension that occurs in stance maximizes balance responses, neuromuscular efficiency and protection of the lower limbs through a process of  foot to core sequencing; one that stiffens the forefoot and torsionally stiffens the joints of the ankle and knee.

Loading/Fascial Tensioning Speed

A 2010 study (4.) found:

Early-stance tension in the PA increased with speed, whereas maximum tension during late stance did not seem to be significantly affected by walking speed. Although, on the one hand, these results give evidence for the existence of a pre-heel-strike, speed-dependent, arch-stiffening mechanism, on the other hand they suggest that augmentation of arch height in late stance is enhanced by higher forces exerted by the intrinsic muscles on the plantar aspect of the foot when walking at faster speeds.

…… or, by more rapid, forceful impulse loading at ski flat – see SUPER PETRA VLHOVA’S EXPLOSIVE IMPULSE LOADING IN ASPEN SLALOM

A 2013 study (3.) found:

Although often showing minimal activity in simple stance, the intrinsic foot muscles are more strongly recruited when additional loads are added to the participant.

A 2015 study (5.) found:

Changes in Muscle-tendon unit (MTU) and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion.

These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient (vertical) foot to ground force transmission.

…….. or foot to ski to snow force transmission.

The Optimal Ski Stance is Unique

While the optimal stance for skiing has the greatest similarity to the late phase of stance, I am not aware of any stance that has requirements similar to the ski the stance where a specific loading sequence precedes rocker impulse loading as the outside ski changes edges in the top of a turn.

As with the gait cycle, the movement pattern associated with a turn cycle also involves loading and swing phases.

Time To Cascade

There are two intertwined rocker mechanisms that impulse load the forefoot at ski flat between edge change. These rocker mechanisms rely on what the 3 components of what I refer to as the Time To Cascade which is only possible when the plantar aponeurosis is rapidly fascially tensioned.

  1. Time to Fascial Tension which affects,
  2. Time to Stabilization which affects
  3. Time to Protection which protects the lower limbs 

In my next post, we will Meet the Rockers and continue with the discussion of the mechanics of balance on the outside ski.

  2. Dynamic loading of the plantar aponeurosis in walking –Erdemir A1, Hamel AJFauth ARPiazza SJSharkey NA. J Bone Joint Surg Am. 2004 Mar;86-A(3):546-52.
  3. Dynamics of longitudinal arch support in relation to walking speed: contribution of the plantar aponeurosis – Paolo Caravaggi, Todd Pataky, Michael Gu¨ nther, Russell Savage and Robin Crompton – Human Anatomy and Cell Biology, School of Biomedical Sciences, University of Liverpool, Liverpool, UK – J. Anat. (2010) 217, pp254–261
  4. The foot core system: a new paradigm for understanding intrinsic foot muscle function – Patrick O McKeon1Jay Hertel2Dennis Bramble3Irene Davis4 Br J Sports Med doi:10.1136/bjsports-2013-092690
  5. Active regulation of longitudinal arch compression and recoil during walking and running Kelly LA, Lichtwark G, Cresswell AG – J R Soc Interface. 2015 Jan 6;12(102):20141076.